任務-1講義-v12016cfa一級基礎數(shù)量組合_第1頁
任務-1講義-v12016cfa一級基礎數(shù)量組合_第2頁
任務-1講義-v12016cfa一級基礎數(shù)量組合_第3頁
任務-1講義-v12016cfa一級基礎數(shù)量組合_第4頁
任務-1講義-v12016cfa一級基礎數(shù)量組合_第5頁
已閱讀5頁,還剩70頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

【夢軒考 專業(yè)提供CFAFRM全 ),'▁????tative?????????TopicTopicWeightingsinCFALevelSessionStudySessionEthics&ProfessionalStudySession2-StudySession4-StudySession7-FinancialReportingandStudySessionCorporate7StudySessionPortfolioManagementandWealth7StudySession13-EquityStudySession15- StudySession5StudySessionAlternative4tativeTimeValueR5TheTimeValueofR6DiscountedCashFlowProbability&R7StatisticalConceptsandMarketR8ProbabilityR9CommonProbabilityInferentialR10SamplingandR11HypothesisTechnicalR12Technical【夢軒考 專業(yè)提供CFAFRM全 R5TimeValueofTimeValueofRequiredinterestrateonasecurity??Annuities???FV,PV,requiredR5TimeValueofRequiredrateofreturnaffectedbythesupplyanddemandoffundsinthethereturnthatinvestorsandsaversrequiretogetthemtowillinglylendtheirfunds;usuallyforparticularDiscountratetheinterestrateweusetodiscountpaymentstobemadeinusuallyusedinterchangeablywiththeinterestOpportunitycostalsounderstoodasaformofinterestrate.Itisthevaluethatinvestorsforgobychoosingaparticularcourseofaction.R5TimeValueofposerequiredrateofNominalrisk-freerate=realrisk-freerate+expectedinflationRequiredinterestrateona=nominalrisk-freerate+defaultriskpremium+liquidityriskpremium+maturityriskpremium????Realrisk-freerate?nominalrisk-freerate??【夢軒考 專業(yè)提供CFAFRM全 R5TimeValueofEARrmEAR(1+periodic 1 1 m?????semi,m=2;???quarterly,?????????????EAR=eannualint-????——?EAR?????????EAR???????ThegreaterthecompoundingthegreatertheEARwillbeincomparisontothestatedthegreaterthedifferencebetweenEARandthestatedR5R5Example:TimeValueofAmoneymanagerhas$1,000,000toinvestforoneyear.Shehasidentifiedtwoalternativeone-year sofdeposit(CD)shownbelow:CompoundingAnnualinterestWhichCDhasthehighesteffectiveannualrate(EAR)andhowmuchinterestwillitearn?HighestInterestR5TimeValueofFuturevalue(FV):Amounttowhichinvestmentgrowsafteroneormorecompoundingperiods.Presentvalue(PV):CurrentvalueofsomefuturecashIfinterestsarecompoundedmtimesperyear,andinvest1Ifinterestsarecompoundedmtimesperyear,andinvestnFV=PV?1+r/m?mnWhere:misthecompoundingristhenominal/quotedannualinterestWhenwecalculatethefuturevalueofcontinuouslycompounding,formula FV=PVlim(1+ 【夢軒考 專業(yè)提供CFAFRM全程+講R5TimeValueofWhat’s---isastreamofequalcashflowsthatoccursatequalintervalsoveragiven??N=numberofI/Y=interestrateperPV=presentPMT=amountofeachperiodicFV=future?????——NI/Y,PMTFV,PV??????????аAnAnexampleofordinaryannuities?????Example1:What’stheFVofanordinaryannuitythatpays150peryearattheendofeachofthenext15years,giventhediscountrateisSolutions:enterrelevantdataforN15,I/Y6,PMT-150,PV0,CPT→FVNotice:ifweweregiventhatFV=3491.4,N=15,I/Y=6,PMT=-150,wealsocouldcalculatePV. ? ? R5TimeValueofR5TimeValueofAboutanannuitydue????Definition:anannuitywheretheannuitypaymentsoccuratthebeginningofeachcompoundingperiod.Measure1:putthecalculatorintheBGNmodeandinputrelevantdata.Measure2:treatasanordinaryannuityandsimplymultipletheresultingPVby(1+I/Y)【夢軒考 專業(yè)提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:【夢軒考 專業(yè)提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:balancetozero.R5Example:TimeValueofAmortization12345R5Example:TimeValueofSupposeyoumustmakefiveannual$1,000payments,thefirstonestartingatthebeginningofYear4(endofYear3).Toaccumulatethemoneytomakethesepayments,youwanttomakethreeequalpaymentsintoaninvestmentaccount,thefirsttobemadeoneyearfromtoday.Assuminga10%rateofreturn,whatistheamountofthesethreeThefirststepinthistypeofproblemistodeterminetheamountofmoneythatmustbeavailableatthebeginningofYear4(t=3)inordertosatisfythepaymentrequirements.BGNmode:N=5;I/Y=10;PMT=-1,000;FV=0;CPT:DeterminetheamountofthethreeENDmode:N=3;I/Y=10;PV=0;FV=-4,169.87;CPT:R5TimeValueofAboutDefinition:Aperpetuityisafinancialinstrumentsthatpaysafixedamountofmoneyatsetintervalsoveraninfiniteperiodoftime. AAA (1 AAA 1r(1r)2(1 1r(1(2) r r【夢軒考 專業(yè)提供CFAFRM全 R6DiscountedCashFlowDiscountedCashFlowNPV&2.??HPY?EAY???????????????3.Money-weightedreturn&Time-weightedR6R6DiscountedCashFlowNP CFNP CFCF(1r11CF(1rN22...CF(1rCFNNttt(1r 0 (1 (1 ... (1Nt (1WhenNPV=0,thediscountIRRmethodassumestheproject’scashflowswillbereinvestedattheIRR.MultiplesolutionsProblemoftheIRRcalculation(#signchanges)R6DiscountedCashFlowProjectDecisionSingleprojectNPVmethod:AcceptitifIRRmethod:AcceptitifIRR>r(requiredrateofTwoProjectsIndependentSimilartoSingleprojectsMutuallyExclusiveNPVmethod:ChoosetheonewithhigherIRRmethod:ChoosetheonewithhigherNPVandIRRmethodsmaywitheach 【夢軒考 專業(yè)提供CFAFRM CalabashCrabHouseisconsideringaninvestmentinkitchen-upgradeprojectswiththefollowingcashflows:AssumingCalabashhasa12.5percentcostofcapital,whichofthefollowinginvestmentdecisionshastheleastjustification?Accept:ProjectBbecausethenetpresentvalue(NPV)ishigherthanthatofProjectProjectAbecausetheIRRishigherthanthecostofProjectAbecausetheinternalrateofreturn(IRR)ishigherthanthatofProjectB.Correctanswer:Define:theholdingperiodreturnissimplythepercentagechangeinthevalueofaninvestmentovertheperioditishold.R6DiscountedCashFlowR6Example:DiscountedCashFlowProjectProjectInitialYearYearYearYearrr( tP1P0R6DiscountedCashFlow(1+BEY)22 (1HPY)365/t【夢軒考 專業(yè)提供CFAFRM全程+講R6DiscountedCashFlowTheHPYistheactualreturnaninvestorwillreceiveifthemoneymarketinstrumentishelduntilmaturity.TheEAYistheannualizedHPYonthebasisofa365-dayyearandincorporatestheeffectsofcompounding.TherMMistheannualizedyieldthatisbasedonpriceanda360-dayyearanddosenotaccountfortheeffectsofcompounding–itassumessimpleinterest.R6Example:DiscountedCashFlowJanePeeblespurchasedaT-billthatmaturesin200daysfor$97,500.Thefacevalueofthebillis$100,000.Whatisthemoneymarketyieldonthebill?Correctanswer:R6Example:DiscountedCashFlowA175-dayT-billhasaneffectiveannualyieldof3.80%.Itsbankdiscountyieldisclosestto:Answer:Wouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasureWouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasurewouldbeaffectedbyclientadditionsorwithdrawals,ifaclientaddsfundsatafavorabletimethemoney-weightedreturnwillbeelevated.R6Example:DiscountedCashFlowR6DiscountedCashFlowMoney-weightedandtime-weightedRateoftime-weightedreturn??????????Time-weightedrateofreturnmeasurescompound僔???Firstly,computetheHPR;then,compute(1+HPR)foreachsubperiodtoobtainatotalreturnfortheentiremeasurementperiod[eg.(1+HPR1)*(1+HPR2)…(1+HPRn)].money-weightedreturn??????????theIRRbasedonthecashflowsrelatedtothe?僔????Firstly,determinethetimingofeachcashthen,usingthecalculationtocomputeIRR,orusinggeometric?????????timeweightedreturn??HPRн??R6Example:DiscountedCashFlowAssumeaninvestorbuysashareofstockfor$100att=0andattheendofthenextyear(t=1),shebuysanadditionalsharefor$120.AttheendofYear2,theinvestorsellsbothsharesfor$130each.Attheendofeachyearintheholdingperiod,thestockpaida$2.00persharedividend.Whatisthemoney-weightedrateofWhatistheannualtime-weightedrateofMoney-weightedrateofreturn(IRR)Time-weightedrateofreturn(geometricmeanreturn)=Time-weightedMoney-weighted【夢軒考 專業(yè)提供CFAFRM全 R7StatisticalConceptsandMarketStatisticalTypesofmeasurementMeasuresofcentralMAD?Var?????Chebyshev’sCV&SharpSkewness&R7StatisticalConceptsandMarketDescriptiveSummarizetheimportantcharacteristicsoflargedataInferentialMakeforecasts,estimates,orjudgmentsaboutalargesetofdataonthebasisofthestatisticalcharacteristicsofasmallerset(asample)R7StatisticalConceptsandMarketTypesofmeasurementNominaldistinguishingtwodifferentthings,noorder,onlyhasexample:assigningthenumber1toamunicipalbondfund,thenumber2toacorporatebondfund.Ordinalscales(>,makingthingsinorder,butthedifferencearenotexample:therankingof1,000smallcapgrowthstocksbymaybedonebyassigningthenumber1tothe100bestperformingIntervalscales(>,<,+,-subtractisexample:Ratioscales(>,<,+,-,*,withoriginalexample:money,ifyouhavezerodollars,youhavenopurchasingbutifyouhave$4.00,youhavetwiceasmuchpurchasingpowerasawith$2.00.Absolute 33Absolute 335–0–5–10R7StatisticalConceptsandMarketAmeasureusedtodescribeacharacteristicofapopulationisreferredtoasaparameter.Inthesamemannerthataparametermaybeusedtodescribeacharacteristicofapopulation,asamplestatisticisusedtomeasureacharacteristicofasample.R7StatisticalConceptsandMarketRelativeTherelativefrequencyiscalculatedbydividingtheabsolutefrequencyofeachturnintervalbythetotalnumberofobservations.FrequencyAfrequencydistributionisatabularpresentationofstatisticaldatathataidstheysisoflargedatasets.Cumulativefrequency/CumulativeRelativeCouldbecalculatedbysummingtheabsoluteorrelativefrequenciesstartingatthelowestintervalandprogressingthroughthehighest.R7StatisticalConceptsandMarketFrequencyR7StatisticalConceptsandMarket【夢軒考 專業(yè)提供CFAFRM全 +講R7StatisticalConceptsandMarketmidpointofeachintervalisplottedonthehorizontalaxis,midpointofeachintervalisplottedonthehorizontalaxis,andtheabsolutefrequencyforthatintervalisplottedontheverticalaxis.Histogramisgraphicalfrequencydistribution876543210NXi n n wiXi(w1X1w2i)NGN inn(1/XiiThearithmeticmeanTheweightedmeanThegeometricmeanTheharmonicmeanharmonicmean<=geometricmean<=arithmeticR7StatisticalConceptsandMarketR7Example:StatisticalConceptsandWhichisthemostHarmonic ArithmeticGeometric Correctanswer:【夢軒考 專業(yè)提供CFAFRM全 R7Example:StatisticalConceptsandMarket ystobtainsthefollowingannualratesofreturnforamutualReturnAnswer:Thefund’sannualholdingperiodreturnisclosestAnswer:R7Example:StatisticalConceptsandMarketAhypotheticalinvestmentinasinglestockinitiallycosts$100.oneyearlater,thestockistradingat$200.Attheendofthesecondyear,thestockpricefallsbacktotheoriginalpurchasepriceof$100.Nodividendarepaidduringthetwo-yearperiod.Calculatethearithmeticandgeometricmeanannualreturns.ReturninYear1=200/100-1=100%ReturninYear2=100/200-1=-50%Arithmeticmean=(100%-50%)/2=25%Geometricmean=(2.0h0.5)1/2–1=Thegeometricmeanreturnof0%accurayreflectsthattheendingvalueoftheinvestmentinYear2equalsthestartingvalueinYear1.Thecompoundrateofreturnontheinvestmentis0%.Thearithmeticmeanreturnreflectstheaverageoftheone-yearreturns.R7StatisticalConceptsandMarketTheuseofarithmeticmeanandgeometricmeanwhendetermininginvestmentreturnsThearithmeticmeanisthestatisticallybestestimatorofthenextyear’sreturnsgivenonlythethreeyearsofreturn Sincepastannualreturnsarecompoundedeachperiod,thegeometricmeanofpastannualreturnsistheappropriatemeasureofpastN inN()iForN inN()iFor i1 Nn( Xi i1 nR7StatisticalConceptsandMarketQuartileThethirdquartile:75%,orthree-fourthsoftheobservationsfallbelowthatvalue.CalculationLy=(n+1)y/100,LyistheObservers?8101213151717181923N=11?Ly=(11+1)*75%=9,i.e.the9thnumberisThethirdquartiles=R7R7StatisticalConceptsandMarketAbsolutedispersion:istheamountofvariabilitypresentwithoutcomparisontoanyreferencepointorben RangeRange umvalue–minimumR7StatisticalConceptsandMarketForanysetofobservations(samplesorpopulation),theproportionofthevaluesthatliewithinkstandarddeviationsofthemeanisatleast11/k2,wherekisanyconstantgreaterthan1.???а???????????k?????????н??1/k2,???k>1?Thisrelationshipappliesregardlessoftheshapeofthe【夢軒考 專業(yè)提供CFAFRM全 R7Example:StatisticalConceptsandAssumeasampleofbeerpricesisnegativelyskewed.Approximaywhatpercentageofthedistributionlieswithinplusorminus2.40standarddeviationsofthemean?Correctanswer:R7R7StatisticalConceptsandMarketCoefficientofvariationmeasurestheamountofdispersioninadistributionrelativetothedistribution’smean.(relativedispersion)CV=CV=sxXThesharpratiomeasuresexcessreturnperunitofR7StatisticalConceptsandMarketMeanMedian Positiveskewed?Mode<median<mean,havingarightfatAreturndistributionwithpositiveskewhasfrequentsmalllossesandafewextremeNegativeskewed?Mode>media>mean,havingaleftfatAreturndistributionwithnegativeskewhasfrequentsmallgainsandafewInvestorsshouldbeattractedbyapositiveskewbecausethemeanreturnfallsabove Sample (X

X (

XS ]()(n1)(n ???????????Positivelyskewed??Negative???? ??????????R7StatisticalConceptsandMarket【夢軒考 R7StatisticalConceptsandMarketLeptokurticvs.Itdealswithwhetherornotadistributionismoreorless“peaked”thananormalExcesskurtosis=samplekurtosis–NormalSampleExcessSample n(n (XiX (XiX i i1 (n1)(n2)(n ?????????????leptokurtic????????????????????????skew???????R7StatisticalConceptsandMarketFatAleptokurticreturndistributionhasmorefrequentextremelylargedeviationsfromthemeanthananormaldistribution.R7Example:StatisticalConceptsandMarketABTheyststatedthatthedistributionnormaldistributionandthatthedistributleftsideofthedistribution.IstheyPorfolioforPortfolionforPost’sioAismorepeakedthanartfolioBhasalongtailontheentcorrectwithrespectto:oSolution:????????㏎Priori【夢軒考 專業(yè)提供CFAFRM全 ????????㏎PrioriR8ProbabilityProbabilityTwodefiningpropertiesofEmpirical,subjective,andprioriOddsfororMultiplicationruleandadditionDependentandindependentCovariance&Expectedvalue,variance,andstandarddeviationofarandomvariableandofreturnsonaportfolioBayes’R8ProbabilityBasicRandomvariableisuncertaineisanobservedvalueofarandomMutuallyexclusiveevents—cannotbothhappenatthesameExhaustiveevents—includeall TwoDefiningPropertiesof0≤P(E)≤P(E1)+P(E2)+……+R8ProbabilityR8Probability??????? Basedonintuitionorsubjective【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityEmpiricalprobability??eg.Historically,theDowJonesIndustrialAveragehasclosedhigherthanthepreviousclosetwooutofeverythreetradingdays.Therefore,theprobabilityoftheDowgoinguptomorrowistwo-thirds,or66.7%.Prioriprobability??eg.Yesterday,24ofthe30DJIAstocksincreasedinvalue.Thus,if1of30stocksisselectedatrandom,thereisan80%(24/30)probabilitythatitsvalueincreasedyesterdaySubjectiveprobability??willclosehighertomorrowisR8ProbabilityOddsforanP(E)/(1-OddsagainstanLastyear,theaveragesalaryincreaseforPoultryResearchAssistantswas2.5percent.Ofthe10,000PoultryResearchAssistants,2,000receivedraisesinexcessofthisamount.TheoddsthataPoultryResearchAssistantreceivedasalaryincreaseinexcessof2.5percentare:1to2toCorrectanswer:R8ProbabilityUnconditionalProbability(marginalprobability):Conditionalprobability:【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityJointprobability:MultiplicationP(AB)=P(A|B)hP(B)=P(B|A)hP(A)IfAandBaremutuallyexclusiveevents,then:P(AB)=P(A|B)=P(B|A)=0ProbabilitythatatleastoneoftwoeventswillAdditionP(AorB)=P(A)+P(B)-IfAandBaremutuallyexclusiveevents,then:P(AorB)=P(A)+P(B)R8ProbabilityTheoccurrenceofAhasnoinfluenceofontheoccurrenceofP(A|B)=P(A)orP(AorB)=P(A)+P(B)-IndependenceandMutuallyExclusivearequiteIfexclusive,mustnotCauseexclusivemeansifAoccur,Bcannotoccur,AinfluentsR8Example:ProbabilityP(A)=0.5,P(B)=0.5,oddforconcurrentAandBis3/5,therelationshipbetweenAandB?MutuallyCorrectanswer:P(AB)=(3/5)/(1+3/5),P(A/B)=P(AB)/P(B)=3/4,P(A/B)н??P(A)【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityForunconditionalprobabilityofeventP(A P(AS1)P(S1 P(AS2)P(S2 ...P(ASN)P(SNwherethesetofeventsS1,S2,...SN ismutuallyexclusiveandExpectedvalue:E(X P(Xi xi*P(xi x1* x2*P(x2 xn*P(xnN P( EX iR8Example:ProbabilityAnystgatheredthefollowinginformation:theprobabilityofeconomyprosperityis75%,theprobabilityofeconomyrecessionis25%.Foracompany,whentheeconomyisprosperity,thereis10%ofprobabilitythatitsEPSis$2.0and90%ofprobabilitythattheEPSis$4.0.However,whentheeconomyisrecession,thereis25%ofprobabilitythattheEPSis$2.0and75%ofprobabilitythattheEPSis$4.0.Whatisthevarianceofthiscompany’sEPS,whentheeconomyisrecession?Correctanswer:WhentheeconomyE(EPS)=25%*2+75%*4=Var(EPS)=25%*(2-3.5)2+75%*(4-3.5)2=R8Probability Prob.Of Prob.Of E(EPS)18%1.8 42%1.7 24%1.316%1.01.51Thejointprobabilityofreturns,forsecuritiesAandB,Thejointprobabilityofreturns,forsecuritiesAandB,areasThecovarianceofthereturnsbetweensecuritiesAandBisclosest1224Correctanswer:R8Example:ProbabilityR8ProbabilityCovariancemeasureshowonerandomvariablemoveswithanotherrandomThecovarianceofRAwithitselfisequaltothevarianceofCovariancerangesfromnegativeinfinitytopositiveCOV(X,X)E[(XE(X))(X 2 E[(X-E(X))(Y- CorrelationmeasuresthelinearrelationshipbetweentworandomCorrelationhasnounits,rangesfrom–1to+1,standardizationofUnderstandthedifferencebetweencorrelationandIfρ=0,thisR8Example:ProbabilityThecovarianceofreturnsfortwomusthaveavaluebetween-1.0andmusthaveavalueequaltotheweightedaverageofthestandarddeviationsofthereturnsofthetwostockswillbepositiveiftheactualreturnsonbothstocksareconsistentlybelowtheirexpectedreturnsatthesametimeCorrectanswer:JointProbabilityFunctionofSecurityAandSecurityBReturns(Entriesarejointprobabilities)ReturnonsecurityReturnonsecurityReturnonsecurity0Returnonsecurity0Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:R8Example:ProbabilityR8ProbabilityExpectedreturn,varianceandstandarddeviationofanE(rp wiE(Riin2 wwcov(R,Ri i1jExpectedStandardDeviationofABR8ProbabilityBayes’ P(A|B P(B|A)*P(P(B P(S|R) P(R|Si)P(Si) P(R)【夢軒考 專業(yè)提供CFAFRM全 R8Probability???? ??????? ??? R8ProbabilityMultiplication n1hn2h……h(huán)n nLabeling(or n1! nk r)! n R9CommonProbabilityCommonProbabilityPropertiesofdiscretedistributionandcontinuousUniformrandomvariableandabinomialrandomThekeypropertiesofthenormalStandardizearandomConfidenceintervalforanormallydistributedrandomLognormalSafety-firstMonteCarlo【夢軒考 專業(yè)提供CFAFRM全程+講R9CommonProbabilityProbabilityDescribetheprobabilitiesofallthepossible esforarandomDiscreteandcontinuousrandomDiscreterandomvariables:thenumberofpossible escanbecounted,andforeachpossible e,thereisameasurableandpositiveprobability.Continuousvariables:thenumberofpossible esisinfinite,eveniflowerandupperboundsexist.P(x)=0eventhoughxcanPR9CommonProbabilityProbability Fordiscreterandom0≤p(x)≤Probabilitydensityfunction(p.d.f):ForcontinuousrandomvariableCumulativeprobabilityfunction(c.p.f):ProbabilityProbabilitydensity0R9CommonProbabilityBinomialBernoullirandom P(Y=0)=1-Binomialrandomvariable?BinomialBernoullirandom P(Y=0)=1-Binomialrandomvariable?theprobabilityofxsuccessesinnp(x P( x)nxpxp)nExpectationsandR9CommonProbabilityR9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsForaprobabilitydistributionforthenumberofdaystheairpollutionisaboveaspecifiedlevel,p(x)=0whenxcannotoccur,orp(x)>0whenitcan.Foraprobabilitydistributionforthespecificlevelofairpollutiononagivenday,p(x)=0evenifxcanoccur.AcumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorgreaterthanagivenCorrectanswer:Acumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorlessthanagivennumber:P(X≤x),orF(X).R9CommonProbabilityDiscreteAdiscreteuniformrandomvariableisoneforwhichtheprobabilitiesforallpossible esforadiscreterandomvariableareequal.Forexample,considerthediscreteuniformprobabilitydistributiondefinedasX={1,2,3,4,5},p(x)=0.2.Here,theprobabilityforeach eisequalto0.2[i.e.,Bernoullirandomvariablepp(1-Binomialrandomvariablenp(1-【夢軒考 專業(yè)提供CFAFRM全 R9CommonProbabilityContinuousUniform----isdefinedoverarangethatspansbetweensomelowerlimit,a,andupperlimit,b,whichserveastheparametersofthedistribution.PropertiesofContinuousuniformForalla≤x1<x2P(X<aorX>b)=P(x x2 (x x1)/(b R9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsisAcontinuousuniformdistributionhasalowerlimitbutnoupperAcumulativedistributionfunctiondefinestheprobabilitythatarandomvariableisgreaterthanagivenvalue.Abinomialdistributioncountsthenumberofsuccessesthatoccurinafixednumberofindependenttrialsthathavemutuallyexclusive(i.e.yesorno) Correctanswer:Arandomvariablewithafinitenumberofequallylikely esisbestdescribedbya:BinomialBernoulliDiscreteuniformCorrectanswer:R9Example:CommonProbabilityArecentstudyindicatedthat60%ofallbusinesseshaveafaxmachine.Fromthebinominalprobabilitydistributiontable,theprobabilitythatexactlyfourbusinesseswillhaveafaxmachineinarandomselectionofsixbusinessesis:Correctanswer:Assumethat40%ofcandidateswhositfortheCFAexaminationpassitthefirsttime.Ofarandomsampleof15candidateswhoaresittingfortheexamforthefirsttime,whatistheexpectednumberofcandidatesthatwillpass?Correctanswer:【夢軒考 專業(yè)提供CFAFRM全 R9Example:CommonProbabilityAnysthasrecentlydeterminedthatonly60percentofallU.S.pensionfundshaveholdingsinhedgefunds.Inevaluatingthisprobability,arandomsampleof50U.S.pensionfundsistaken.ThenumberofU.S.pensionfundsinthesampleof50thathavehedgefundsintheirportfoliowouldmostaccuraybedescribedas:AbinomialrandomABernoullirandomAcontinuousrandomCorrectanswer:AnenergyystforecaststhatthepriceperbarrelofcrudeoilfiveyearsfromnowwillrangebetweenUSD$75andUSD$105.Assumingacontinuousuniformdistribution,theprobabilitythatthepricewillbelessthanUSD$80fiveyearsfromnowisclosestto:Correctanswer:R9CommonProbabilityTrackingerroristhedifferencebetweenthetotalreturnonaportfolioandthetotalreturnonthebenarkagainstwhichitsperformanceismeasured.R9CommonProbabilityTheshapeofthedensityxX~N(μ,Symmetricaldistribution:skewness=0;Alinearcombinationofnormallydistributedrandomvariablesisalsonormallydistributed.Thetailsgetthinandgotozerobutextendinfiniy,asympotic?R9CommonProbability【夢軒考 專業(yè)提供CFAFRM全R9CommonProbabilityTheconfidence68%confidenceinterval[,]90%confidenceinterval[1.651.6595%confidenceinterval[1.961.9699%confidenceinterval[2.582.58U2.58σU1.96σU U+1σU+1.96σUR9Example:CommonProbability ystdeterminedthatapproxima y99percentoftheobservationsofdailysalesforacompanywerewithintheintervalfrom$230,000to$480,000andthatdailysalesforthecompanywerenormallydistributed.Themeandailysalesandstandarddeviationofdailysales,respectively,forthecompanywereclosestto:Meandaily Standarddeviationofdaily Correctanswer:R9CommonProbabilityStandardnormalN(0,1)orStandardization:ifX~N(μ,σ2), X ~N(0,1)F(-z)1- 1【夢軒考 專業(yè)提供CFAFRM全 R9CommonProbabilityR9Example:CommonProbabilityAstudyofhedgefundinvestorsfoundthattheirannualhousehold esarenormallydistributedwithameanof$175,000andastandarddeviationof$25,000.F(1)=0.8413,F(2)=0.9772,F(3)=0.9987Thepercentofhedgefundinvestorsthat eslessthan$100,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$225,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$150,000isclosestR9CommonProba

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論