版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
【夢軒考 專業(yè)提供CFAFRM全 ),'▁????tative?????????TopicTopicWeightingsinCFALevelSessionStudySessionEthics&ProfessionalStudySession2-StudySession4-StudySession7-FinancialReportingandStudySessionCorporate7StudySessionPortfolioManagementandWealth7StudySession13-EquityStudySession15- StudySession5StudySessionAlternative4tativeTimeValueR5TheTimeValueofR6DiscountedCashFlowProbability&R7StatisticalConceptsandMarketR8ProbabilityR9CommonProbabilityInferentialR10SamplingandR11HypothesisTechnicalR12Technical【夢軒考 專業(yè)提供CFAFRM全 R5TimeValueofTimeValueofRequiredinterestrateonasecurity??Annuities???FV,PV,requiredR5TimeValueofRequiredrateofreturnaffectedbythesupplyanddemandoffundsinthethereturnthatinvestorsandsaversrequiretogetthemtowillinglylendtheirfunds;usuallyforparticularDiscountratetheinterestrateweusetodiscountpaymentstobemadeinusuallyusedinterchangeablywiththeinterestOpportunitycostalsounderstoodasaformofinterestrate.Itisthevaluethatinvestorsforgobychoosingaparticularcourseofaction.R5TimeValueofposerequiredrateofNominalrisk-freerate=realrisk-freerate+expectedinflationRequiredinterestrateona=nominalrisk-freerate+defaultriskpremium+liquidityriskpremium+maturityriskpremium????Realrisk-freerate?nominalrisk-freerate??【夢軒考 專業(yè)提供CFAFRM全 R5TimeValueofEARrmEAR(1+periodic 1 1 m?????semi,m=2;???quarterly,?????????????EAR=eannualint-????——?EAR?????????EAR???????ThegreaterthecompoundingthegreatertheEARwillbeincomparisontothestatedthegreaterthedifferencebetweenEARandthestatedR5R5Example:TimeValueofAmoneymanagerhas$1,000,000toinvestforoneyear.Shehasidentifiedtwoalternativeone-year sofdeposit(CD)shownbelow:CompoundingAnnualinterestWhichCDhasthehighesteffectiveannualrate(EAR)andhowmuchinterestwillitearn?HighestInterestR5TimeValueofFuturevalue(FV):Amounttowhichinvestmentgrowsafteroneormorecompoundingperiods.Presentvalue(PV):CurrentvalueofsomefuturecashIfinterestsarecompoundedmtimesperyear,andinvest1Ifinterestsarecompoundedmtimesperyear,andinvestnFV=PV?1+r/m?mnWhere:misthecompoundingristhenominal/quotedannualinterestWhenwecalculatethefuturevalueofcontinuouslycompounding,formula FV=PVlim(1+ 【夢軒考 專業(yè)提供CFAFRM全程+講R5TimeValueofWhat’s---isastreamofequalcashflowsthatoccursatequalintervalsoveragiven??N=numberofI/Y=interestrateperPV=presentPMT=amountofeachperiodicFV=future?????——NI/Y,PMTFV,PV??????????аAnAnexampleofordinaryannuities?????Example1:What’stheFVofanordinaryannuitythatpays150peryearattheendofeachofthenext15years,giventhediscountrateisSolutions:enterrelevantdataforN15,I/Y6,PMT-150,PV0,CPT→FVNotice:ifweweregiventhatFV=3491.4,N=15,I/Y=6,PMT=-150,wealsocouldcalculatePV. ? ? R5TimeValueofR5TimeValueofAboutanannuitydue????Definition:anannuitywheretheannuitypaymentsoccuratthebeginningofeachcompoundingperiod.Measure1:putthecalculatorintheBGNmodeandinputrelevantdata.Measure2:treatasanordinaryannuityandsimplymultipletheresultingPVby(1+I/Y)【夢軒考 專業(yè)提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:【夢軒考 專業(yè)提供CFAFRMConstructanamortizationscheduletoshowtheinterestandprincipalcomponentsoftheendofyearpaymentsfora10%,5year,$10,000loan.Theamountoftheloanpayments:N=5;I/Y=10;PV=$10,000;FV=0;CPT:balancetozero.R5Example:TimeValueofAmortization12345R5Example:TimeValueofSupposeyoumustmakefiveannual$1,000payments,thefirstonestartingatthebeginningofYear4(endofYear3).Toaccumulatethemoneytomakethesepayments,youwanttomakethreeequalpaymentsintoaninvestmentaccount,thefirsttobemadeoneyearfromtoday.Assuminga10%rateofreturn,whatistheamountofthesethreeThefirststepinthistypeofproblemistodeterminetheamountofmoneythatmustbeavailableatthebeginningofYear4(t=3)inordertosatisfythepaymentrequirements.BGNmode:N=5;I/Y=10;PMT=-1,000;FV=0;CPT:DeterminetheamountofthethreeENDmode:N=3;I/Y=10;PV=0;FV=-4,169.87;CPT:R5TimeValueofAboutDefinition:Aperpetuityisafinancialinstrumentsthatpaysafixedamountofmoneyatsetintervalsoveraninfiniteperiodoftime. AAA (1 AAA 1r(1r)2(1 1r(1(2) r r【夢軒考 專業(yè)提供CFAFRM全 R6DiscountedCashFlowDiscountedCashFlowNPV&2.??HPY?EAY???????????????3.Money-weightedreturn&Time-weightedR6R6DiscountedCashFlowNP CFNP CFCF(1r11CF(1rN22...CF(1rCFNNttt(1r 0 (1 (1 ... (1Nt (1WhenNPV=0,thediscountIRRmethodassumestheproject’scashflowswillbereinvestedattheIRR.MultiplesolutionsProblemoftheIRRcalculation(#signchanges)R6DiscountedCashFlowProjectDecisionSingleprojectNPVmethod:AcceptitifIRRmethod:AcceptitifIRR>r(requiredrateofTwoProjectsIndependentSimilartoSingleprojectsMutuallyExclusiveNPVmethod:ChoosetheonewithhigherIRRmethod:ChoosetheonewithhigherNPVandIRRmethodsmaywitheach 【夢軒考 專業(yè)提供CFAFRM CalabashCrabHouseisconsideringaninvestmentinkitchen-upgradeprojectswiththefollowingcashflows:AssumingCalabashhasa12.5percentcostofcapital,whichofthefollowinginvestmentdecisionshastheleastjustification?Accept:ProjectBbecausethenetpresentvalue(NPV)ishigherthanthatofProjectProjectAbecausetheIRRishigherthanthecostofProjectAbecausetheinternalrateofreturn(IRR)ishigherthanthatofProjectB.Correctanswer:Define:theholdingperiodreturnissimplythepercentagechangeinthevalueofaninvestmentovertheperioditishold.R6DiscountedCashFlowR6Example:DiscountedCashFlowProjectProjectInitialYearYearYearYearrr( tP1P0R6DiscountedCashFlow(1+BEY)22 (1HPY)365/t【夢軒考 專業(yè)提供CFAFRM全程+講R6DiscountedCashFlowTheHPYistheactualreturnaninvestorwillreceiveifthemoneymarketinstrumentishelduntilmaturity.TheEAYistheannualizedHPYonthebasisofa365-dayyearandincorporatestheeffectsofcompounding.TherMMistheannualizedyieldthatisbasedonpriceanda360-dayyearanddosenotaccountfortheeffectsofcompounding–itassumessimpleinterest.R6Example:DiscountedCashFlowJanePeeblespurchasedaT-billthatmaturesin200daysfor$97,500.Thefacevalueofthebillis$100,000.Whatisthemoneymarketyieldonthebill?Correctanswer:R6Example:DiscountedCashFlowA175-dayT-billhasaneffectiveannualyieldof3.80%.Itsbankdiscountyieldisclosestto:Answer:Wouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasureWouldaclientmakingadditionsorwithdrawalsoffundsmostlikelyaffecttheirportfolio’s:Correctanswer:Thetime-weightedreturnisnotaffectedbycashwithdrawalsoradditiontotheportfolio,themoney-weightedreturnmeasurewouldbeaffectedbyclientadditionsorwithdrawals,ifaclientaddsfundsatafavorabletimethemoney-weightedreturnwillbeelevated.R6Example:DiscountedCashFlowR6DiscountedCashFlowMoney-weightedandtime-weightedRateoftime-weightedreturn??????????Time-weightedrateofreturnmeasurescompound僔???Firstly,computetheHPR;then,compute(1+HPR)foreachsubperiodtoobtainatotalreturnfortheentiremeasurementperiod[eg.(1+HPR1)*(1+HPR2)…(1+HPRn)].money-weightedreturn??????????theIRRbasedonthecashflowsrelatedtothe?僔????Firstly,determinethetimingofeachcashthen,usingthecalculationtocomputeIRR,orusinggeometric?????????timeweightedreturn??HPRн??R6Example:DiscountedCashFlowAssumeaninvestorbuysashareofstockfor$100att=0andattheendofthenextyear(t=1),shebuysanadditionalsharefor$120.AttheendofYear2,theinvestorsellsbothsharesfor$130each.Attheendofeachyearintheholdingperiod,thestockpaida$2.00persharedividend.Whatisthemoney-weightedrateofWhatistheannualtime-weightedrateofMoney-weightedrateofreturn(IRR)Time-weightedrateofreturn(geometricmeanreturn)=Time-weightedMoney-weighted【夢軒考 專業(yè)提供CFAFRM全 R7StatisticalConceptsandMarketStatisticalTypesofmeasurementMeasuresofcentralMAD?Var?????Chebyshev’sCV&SharpSkewness&R7StatisticalConceptsandMarketDescriptiveSummarizetheimportantcharacteristicsoflargedataInferentialMakeforecasts,estimates,orjudgmentsaboutalargesetofdataonthebasisofthestatisticalcharacteristicsofasmallerset(asample)R7StatisticalConceptsandMarketTypesofmeasurementNominaldistinguishingtwodifferentthings,noorder,onlyhasexample:assigningthenumber1toamunicipalbondfund,thenumber2toacorporatebondfund.Ordinalscales(>,makingthingsinorder,butthedifferencearenotexample:therankingof1,000smallcapgrowthstocksbymaybedonebyassigningthenumber1tothe100bestperformingIntervalscales(>,<,+,-subtractisexample:Ratioscales(>,<,+,-,*,withoriginalexample:money,ifyouhavezerodollars,youhavenopurchasingbutifyouhave$4.00,youhavetwiceasmuchpurchasingpowerasawith$2.00.Absolute 33Absolute 335–0–5–10R7StatisticalConceptsandMarketAmeasureusedtodescribeacharacteristicofapopulationisreferredtoasaparameter.Inthesamemannerthataparametermaybeusedtodescribeacharacteristicofapopulation,asamplestatisticisusedtomeasureacharacteristicofasample.R7StatisticalConceptsandMarketRelativeTherelativefrequencyiscalculatedbydividingtheabsolutefrequencyofeachturnintervalbythetotalnumberofobservations.FrequencyAfrequencydistributionisatabularpresentationofstatisticaldatathataidstheysisoflargedatasets.Cumulativefrequency/CumulativeRelativeCouldbecalculatedbysummingtheabsoluteorrelativefrequenciesstartingatthelowestintervalandprogressingthroughthehighest.R7StatisticalConceptsandMarketFrequencyR7StatisticalConceptsandMarket【夢軒考 專業(yè)提供CFAFRM全 +講R7StatisticalConceptsandMarketmidpointofeachintervalisplottedonthehorizontalaxis,midpointofeachintervalisplottedonthehorizontalaxis,andtheabsolutefrequencyforthatintervalisplottedontheverticalaxis.Histogramisgraphicalfrequencydistribution876543210NXi n n wiXi(w1X1w2i)NGN inn(1/XiiThearithmeticmeanTheweightedmeanThegeometricmeanTheharmonicmeanharmonicmean<=geometricmean<=arithmeticR7StatisticalConceptsandMarketR7Example:StatisticalConceptsandWhichisthemostHarmonic ArithmeticGeometric Correctanswer:【夢軒考 專業(yè)提供CFAFRM全 R7Example:StatisticalConceptsandMarket ystobtainsthefollowingannualratesofreturnforamutualReturnAnswer:Thefund’sannualholdingperiodreturnisclosestAnswer:R7Example:StatisticalConceptsandMarketAhypotheticalinvestmentinasinglestockinitiallycosts$100.oneyearlater,thestockistradingat$200.Attheendofthesecondyear,thestockpricefallsbacktotheoriginalpurchasepriceof$100.Nodividendarepaidduringthetwo-yearperiod.Calculatethearithmeticandgeometricmeanannualreturns.ReturninYear1=200/100-1=100%ReturninYear2=100/200-1=-50%Arithmeticmean=(100%-50%)/2=25%Geometricmean=(2.0h0.5)1/2–1=Thegeometricmeanreturnof0%accurayreflectsthattheendingvalueoftheinvestmentinYear2equalsthestartingvalueinYear1.Thecompoundrateofreturnontheinvestmentis0%.Thearithmeticmeanreturnreflectstheaverageoftheone-yearreturns.R7StatisticalConceptsandMarketTheuseofarithmeticmeanandgeometricmeanwhendetermininginvestmentreturnsThearithmeticmeanisthestatisticallybestestimatorofthenextyear’sreturnsgivenonlythethreeyearsofreturn Sincepastannualreturnsarecompoundedeachperiod,thegeometricmeanofpastannualreturnsistheappropriatemeasureofpastN inN()iForN inN()iFor i1 Nn( Xi i1 nR7StatisticalConceptsandMarketQuartileThethirdquartile:75%,orthree-fourthsoftheobservationsfallbelowthatvalue.CalculationLy=(n+1)y/100,LyistheObservers?8101213151717181923N=11?Ly=(11+1)*75%=9,i.e.the9thnumberisThethirdquartiles=R7R7StatisticalConceptsandMarketAbsolutedispersion:istheamountofvariabilitypresentwithoutcomparisontoanyreferencepointorben RangeRange umvalue–minimumR7StatisticalConceptsandMarketForanysetofobservations(samplesorpopulation),theproportionofthevaluesthatliewithinkstandarddeviationsofthemeanisatleast11/k2,wherekisanyconstantgreaterthan1.???а???????????k?????????н??1/k2,???k>1?Thisrelationshipappliesregardlessoftheshapeofthe【夢軒考 專業(yè)提供CFAFRM全 R7Example:StatisticalConceptsandAssumeasampleofbeerpricesisnegativelyskewed.Approximaywhatpercentageofthedistributionlieswithinplusorminus2.40standarddeviationsofthemean?Correctanswer:R7R7StatisticalConceptsandMarketCoefficientofvariationmeasurestheamountofdispersioninadistributionrelativetothedistribution’smean.(relativedispersion)CV=CV=sxXThesharpratiomeasuresexcessreturnperunitofR7StatisticalConceptsandMarketMeanMedian Positiveskewed?Mode<median<mean,havingarightfatAreturndistributionwithpositiveskewhasfrequentsmalllossesandafewextremeNegativeskewed?Mode>media>mean,havingaleftfatAreturndistributionwithnegativeskewhasfrequentsmallgainsandafewInvestorsshouldbeattractedbyapositiveskewbecausethemeanreturnfallsabove Sample (X
X (
XS ]()(n1)(n ???????????Positivelyskewed??Negative???? ??????????R7StatisticalConceptsandMarket【夢軒考 R7StatisticalConceptsandMarketLeptokurticvs.Itdealswithwhetherornotadistributionismoreorless“peaked”thananormalExcesskurtosis=samplekurtosis–NormalSampleExcessSample n(n (XiX (XiX i i1 (n1)(n2)(n ?????????????leptokurtic????????????????????????skew???????R7StatisticalConceptsandMarketFatAleptokurticreturndistributionhasmorefrequentextremelylargedeviationsfromthemeanthananormaldistribution.R7Example:StatisticalConceptsandMarketABTheyststatedthatthedistributionnormaldistributionandthatthedistributleftsideofthedistribution.IstheyPorfolioforPortfolionforPost’sioAismorepeakedthanartfolioBhasalongtailontheentcorrectwithrespectto:oSolution:????????㏎Priori【夢軒考 專業(yè)提供CFAFRM全 ????????㏎PrioriR8ProbabilityProbabilityTwodefiningpropertiesofEmpirical,subjective,andprioriOddsfororMultiplicationruleandadditionDependentandindependentCovariance&Expectedvalue,variance,andstandarddeviationofarandomvariableandofreturnsonaportfolioBayes’R8ProbabilityBasicRandomvariableisuncertaineisanobservedvalueofarandomMutuallyexclusiveevents—cannotbothhappenatthesameExhaustiveevents—includeall TwoDefiningPropertiesof0≤P(E)≤P(E1)+P(E2)+……+R8ProbabilityR8Probability??????? Basedonintuitionorsubjective【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityEmpiricalprobability??eg.Historically,theDowJonesIndustrialAveragehasclosedhigherthanthepreviousclosetwooutofeverythreetradingdays.Therefore,theprobabilityoftheDowgoinguptomorrowistwo-thirds,or66.7%.Prioriprobability??eg.Yesterday,24ofthe30DJIAstocksincreasedinvalue.Thus,if1of30stocksisselectedatrandom,thereisan80%(24/30)probabilitythatitsvalueincreasedyesterdaySubjectiveprobability??willclosehighertomorrowisR8ProbabilityOddsforanP(E)/(1-OddsagainstanLastyear,theaveragesalaryincreaseforPoultryResearchAssistantswas2.5percent.Ofthe10,000PoultryResearchAssistants,2,000receivedraisesinexcessofthisamount.TheoddsthataPoultryResearchAssistantreceivedasalaryincreaseinexcessof2.5percentare:1to2toCorrectanswer:R8ProbabilityUnconditionalProbability(marginalprobability):Conditionalprobability:【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityJointprobability:MultiplicationP(AB)=P(A|B)hP(B)=P(B|A)hP(A)IfAandBaremutuallyexclusiveevents,then:P(AB)=P(A|B)=P(B|A)=0ProbabilitythatatleastoneoftwoeventswillAdditionP(AorB)=P(A)+P(B)-IfAandBaremutuallyexclusiveevents,then:P(AorB)=P(A)+P(B)R8ProbabilityTheoccurrenceofAhasnoinfluenceofontheoccurrenceofP(A|B)=P(A)orP(AorB)=P(A)+P(B)-IndependenceandMutuallyExclusivearequiteIfexclusive,mustnotCauseexclusivemeansifAoccur,Bcannotoccur,AinfluentsR8Example:ProbabilityP(A)=0.5,P(B)=0.5,oddforconcurrentAandBis3/5,therelationshipbetweenAandB?MutuallyCorrectanswer:P(AB)=(3/5)/(1+3/5),P(A/B)=P(AB)/P(B)=3/4,P(A/B)н??P(A)【夢軒考 專業(yè)提供CFAFRM全 R8ProbabilityForunconditionalprobabilityofeventP(A P(AS1)P(S1 P(AS2)P(S2 ...P(ASN)P(SNwherethesetofeventsS1,S2,...SN ismutuallyexclusiveandExpectedvalue:E(X P(Xi xi*P(xi x1* x2*P(x2 xn*P(xnN P( EX iR8Example:ProbabilityAnystgatheredthefollowinginformation:theprobabilityofeconomyprosperityis75%,theprobabilityofeconomyrecessionis25%.Foracompany,whentheeconomyisprosperity,thereis10%ofprobabilitythatitsEPSis$2.0and90%ofprobabilitythattheEPSis$4.0.However,whentheeconomyisrecession,thereis25%ofprobabilitythattheEPSis$2.0and75%ofprobabilitythattheEPSis$4.0.Whatisthevarianceofthiscompany’sEPS,whentheeconomyisrecession?Correctanswer:WhentheeconomyE(EPS)=25%*2+75%*4=Var(EPS)=25%*(2-3.5)2+75%*(4-3.5)2=R8Probability Prob.Of Prob.Of E(EPS)18%1.8 42%1.7 24%1.316%1.01.51Thejointprobabilityofreturns,forsecuritiesAandB,Thejointprobabilityofreturns,forsecuritiesAandB,areasThecovarianceofthereturnsbetweensecuritiesAandBisclosest1224Correctanswer:R8Example:ProbabilityR8ProbabilityCovariancemeasureshowonerandomvariablemoveswithanotherrandomThecovarianceofRAwithitselfisequaltothevarianceofCovariancerangesfromnegativeinfinitytopositiveCOV(X,X)E[(XE(X))(X 2 E[(X-E(X))(Y- CorrelationmeasuresthelinearrelationshipbetweentworandomCorrelationhasnounits,rangesfrom–1to+1,standardizationofUnderstandthedifferencebetweencorrelationandIfρ=0,thisR8Example:ProbabilityThecovarianceofreturnsfortwomusthaveavaluebetween-1.0andmusthaveavalueequaltotheweightedaverageofthestandarddeviationsofthereturnsofthetwostockswillbepositiveiftheactualreturnsonbothstocksareconsistentlybelowtheirexpectedreturnsatthesametimeCorrectanswer:JointProbabilityFunctionofSecurityAandSecurityBReturns(Entriesarejointprobabilities)ReturnonsecurityReturnonsecurityReturnonsecurity0Returnonsecurity0Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:Anindividualwantstoinvest$100,000andisconsideringthefollowingTheexpectedcorrelationofreturnsforthetwostocksis+0.5.Iftheinvestorinvests$40,000inStockAand$60,000inStockB,theexpectedstandarddeviationofreturnsontheportfoliowillbe:equaltolessthangreaterthan20.4%becausethecorrelationcoefficientisgreaterthanCorrectanswer:R8Example:ProbabilityR8ProbabilityExpectedreturn,varianceandstandarddeviationofanE(rp wiE(Riin2 wwcov(R,Ri i1jExpectedStandardDeviationofABR8ProbabilityBayes’ P(A|B P(B|A)*P(P(B P(S|R) P(R|Si)P(Si) P(R)【夢軒考 專業(yè)提供CFAFRM全 R8Probability???? ??????? ??? R8ProbabilityMultiplication n1hn2h……h(huán)n nLabeling(or n1! nk r)! n R9CommonProbabilityCommonProbabilityPropertiesofdiscretedistributionandcontinuousUniformrandomvariableandabinomialrandomThekeypropertiesofthenormalStandardizearandomConfidenceintervalforanormallydistributedrandomLognormalSafety-firstMonteCarlo【夢軒考 專業(yè)提供CFAFRM全程+講R9CommonProbabilityProbabilityDescribetheprobabilitiesofallthepossible esforarandomDiscreteandcontinuousrandomDiscreterandomvariables:thenumberofpossible escanbecounted,andforeachpossible e,thereisameasurableandpositiveprobability.Continuousvariables:thenumberofpossible esisinfinite,eveniflowerandupperboundsexist.P(x)=0eventhoughxcanPR9CommonProbabilityProbability Fordiscreterandom0≤p(x)≤Probabilitydensityfunction(p.d.f):ForcontinuousrandomvariableCumulativeprobabilityfunction(c.p.f):ProbabilityProbabilitydensity0R9CommonProbabilityBinomialBernoullirandom P(Y=0)=1-Binomialrandomvariable?BinomialBernoullirandom P(Y=0)=1-Binomialrandomvariable?theprobabilityofxsuccessesinnp(x P( x)nxpxp)nExpectationsandR9CommonProbabilityR9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsForaprobabilitydistributionforthenumberofdaystheairpollutionisaboveaspecifiedlevel,p(x)=0whenxcannotoccur,orp(x)>0whenitcan.Foraprobabilitydistributionforthespecificlevelofairpollutiononagivenday,p(x)=0evenifxcanoccur.AcumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorgreaterthanagivenCorrectanswer:Acumulativedistributionfunctiongivestheprobabilitythatarandomvariabletakesavalueequaltoorlessthanagivennumber:P(X≤x),orF(X).R9CommonProbabilityDiscreteAdiscreteuniformrandomvariableisoneforwhichtheprobabilitiesforallpossible esforadiscreterandomvariableareequal.Forexample,considerthediscreteuniformprobabilitydistributiondefinedasX={1,2,3,4,5},p(x)=0.2.Here,theprobabilityforeach eisequalto0.2[i.e.,Bernoullirandomvariablepp(1-Binomialrandomvariablenp(1-【夢軒考 專業(yè)提供CFAFRM全 R9CommonProbabilityContinuousUniform----isdefinedoverarangethatspansbetweensomelowerlimit,a,andupperlimit,b,whichserveastheparametersofthedistribution.PropertiesofContinuousuniformForalla≤x1<x2P(X<aorX>b)=P(x x2 (x x1)/(b R9Example:CommonProbabilityWhichofthefollowingstatementsaboutprobabilitydistributionsisAcontinuousuniformdistributionhasalowerlimitbutnoupperAcumulativedistributionfunctiondefinestheprobabilitythatarandomvariableisgreaterthanagivenvalue.Abinomialdistributioncountsthenumberofsuccessesthatoccurinafixednumberofindependenttrialsthathavemutuallyexclusive(i.e.yesorno) Correctanswer:Arandomvariablewithafinitenumberofequallylikely esisbestdescribedbya:BinomialBernoulliDiscreteuniformCorrectanswer:R9Example:CommonProbabilityArecentstudyindicatedthat60%ofallbusinesseshaveafaxmachine.Fromthebinominalprobabilitydistributiontable,theprobabilitythatexactlyfourbusinesseswillhaveafaxmachineinarandomselectionofsixbusinessesis:Correctanswer:Assumethat40%ofcandidateswhositfortheCFAexaminationpassitthefirsttime.Ofarandomsampleof15candidateswhoaresittingfortheexamforthefirsttime,whatistheexpectednumberofcandidatesthatwillpass?Correctanswer:【夢軒考 專業(yè)提供CFAFRM全 R9Example:CommonProbabilityAnysthasrecentlydeterminedthatonly60percentofallU.S.pensionfundshaveholdingsinhedgefunds.Inevaluatingthisprobability,arandomsampleof50U.S.pensionfundsistaken.ThenumberofU.S.pensionfundsinthesampleof50thathavehedgefundsintheirportfoliowouldmostaccuraybedescribedas:AbinomialrandomABernoullirandomAcontinuousrandomCorrectanswer:AnenergyystforecaststhatthepriceperbarrelofcrudeoilfiveyearsfromnowwillrangebetweenUSD$75andUSD$105.Assumingacontinuousuniformdistribution,theprobabilitythatthepricewillbelessthanUSD$80fiveyearsfromnowisclosestto:Correctanswer:R9CommonProbabilityTrackingerroristhedifferencebetweenthetotalreturnonaportfolioandthetotalreturnonthebenarkagainstwhichitsperformanceismeasured.R9CommonProbabilityTheshapeofthedensityxX~N(μ,Symmetricaldistribution:skewness=0;Alinearcombinationofnormallydistributedrandomvariablesisalsonormallydistributed.Thetailsgetthinandgotozerobutextendinfiniy,asympotic?R9CommonProbability【夢軒考 專業(yè)提供CFAFRM全R9CommonProbabilityTheconfidence68%confidenceinterval[,]90%confidenceinterval[1.651.6595%confidenceinterval[1.961.9699%confidenceinterval[2.582.58U2.58σU1.96σU U+1σU+1.96σUR9Example:CommonProbability ystdeterminedthatapproxima y99percentoftheobservationsofdailysalesforacompanywerewithintheintervalfrom$230,000to$480,000andthatdailysalesforthecompanywerenormallydistributed.Themeandailysalesandstandarddeviationofdailysales,respectively,forthecompanywereclosestto:Meandaily Standarddeviationofdaily Correctanswer:R9CommonProbabilityStandardnormalN(0,1)orStandardization:ifX~N(μ,σ2), X ~N(0,1)F(-z)1- 1【夢軒考 專業(yè)提供CFAFRM全 R9CommonProbabilityR9Example:CommonProbabilityAstudyofhedgefundinvestorsfoundthattheirannualhousehold esarenormallydistributedwithameanof$175,000andastandarddeviationof$25,000.F(1)=0.8413,F(2)=0.9772,F(3)=0.9987Thepercentofhedgefundinvestorsthat eslessthan$100,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$225,000isclosestThepercentofhedgefundinvestorsthat esgreaterthan$150,000isclosestR9CommonProba
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45151-2024城市配送網(wǎng)絡體系建設指南
- GB/T 29301-2024靜電復印(包括多功能)設備用鼓粉盒
- 二零二五版出租車投資入股及品牌拓展合同3篇
- 二零二五年建筑工程安全施工協(xié)議書范本3篇
- 2024甲乙雙方就新產(chǎn)品研發(fā)項目所簽訂的技術(shù)秘密保護合同
- 2024版合作社商用物業(yè)租賃協(xié)議范本版B版
- 二零二五年能源公司股份代持與能源項目合作協(xié)議3篇
- 2024遼寧事業(yè)單位聘用合同書
- 2024版場地租賃協(xié)議書模板
- 二零二五年道路運輸安全生產(chǎn)責任合同3篇
- 期末 (試題) -2024-2025學年人教PEP版(2024)英語三年級上冊
- DB34∕T 4010-2021 水利工程外觀質(zhì)量評定規(guī)程
- 納米復合材料的增韌增能機制
- 圖書館前臺接待工作總結(jié)
- 衛(wèi)生院藥品管理制度
- 神經(jīng)外科進修匯報課件
- 2024老年人靜脈血栓栓塞癥防治中國專家共識(完整版)
- 騰訊營銷師認證考試題庫(附答案)
- 鄰近鐵路營業(yè)線施工安全監(jiān)測技術(shù)規(guī)程 (TB 10314-2021)
- 四年級上冊脫式計算100題及答案
- 資本市場與財務管理
評論
0/150
提交評論