版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
外文文獻(xiàn):Sealedbuildingdrainageandventsystems—anapplicationofactiveairpressuretransientcontrolandsuppressionAbstractTheintroductionofsealedbuildingdrainageandventsystemsisconsideredaviablepropositionforcomplexbuildingsduetotheuseofactivepressuretransientcontrolandsuppressionintheformofairadmittancevalvesandpositiveairpressureattenuatorscoupledwiththeinterconnectionofthenetwork'sverticalstacks.Thispaperpresentsasimulationbasedonafour-stacknetworkthatillustratesflowmechanismswithinthepipeworkfollowingbothappliancedischargegenerated,andsewerimposed,transients.Thissimulationidentifiestheroleoftheactiveairpressurecontroldevicesinmaintainingsystempressuresatlevelsthatdonotdepletetrapseals.Furthersimulationexerciseswouldbenecessarytoprovideproofofconcept,anditwouldbeadvantageoustoparallelthesewithlaboratory,andpossiblysite,trialsforvalidationpurposes.Despitethiscautiontheinitialresultsarehighlyencouragingandaresufficienttoconfirmthepotentialtoprovidedefinitebenefitsintermsofenhancedsystemsecurityaswellasincreasedreliabilityandreducedinstallationandmaterialcosts.Keywords:Activecontrol;Trapretention;TransientpropagationNomenclatureC+-——characteristicequationsc——wavespeed,m/sD——branchorstackdiameter,mf——frictionfactor,UKdefinitionviaDarcyΔh=4fLu2/2Dgg——accelerationduetogravity,m/s2K——losscoefficientL——pipelength,mp——airpressure,N/m2t——time,su——meanairvelocity,m/sx——distance,mγ——ratiospecificheatsΔh——headloss,mΔp——pressuredifference,N/m2Δt——timestep,sΔx——internodallength,mρ——density,kg/m3ArticleOutlineNomenclature1.Introduction—airpressuretransientcontrolandsuppression2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks3.Roleofdiversityinsystemoperation4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystem5.Simulationsignconventions6.Waterdischargetothenetwork7.Surchargeatbaseofstack18.Sewerimposedtransients9.Trapsealoscillationandretention10.Conclusion—viabilityofasealedbuildingdrainageandventsystem1.Airpressuretransientsgeneratedwithinbuildingdrainageandventsystemsasanaturalconsequenceofsystemoperationmayberesponsiblefortrapsealdepletionandcrosscontaminationofhabitablespace[1].Traditionalmodesoftrapsealprotection,basedontheVictorianengineer'sobsessionwithodourexclusion[2],[3]and[4],dependpredominantlyonpassivesolutionswhererelianceisplacedoncrossconnectionsandverticalstacksventedtoatmosphere[5]and[6].Thisapproach,whilebothprovenandtraditional,hasinherentweaknesses,includingtheremotenessoftheventterminations[7],leadingtodelaysinthearrivalofrelievingreflections,andthemultiplicityofopenrooflevelstackterminationsinherentwithincomplexbuildings.Thecomplexityoftheventsystemrequiredalsohassignificantcostandspaceimplications[8].Thedevelopmentofairadmittancevalves(AAVs)overthepasttwodecadesprovidesthedesignerwithameansofalleviatingnegativetransientsgeneratedasrandomappliancedischargescontributetothetimedependentwater-flowconditionswithinthesystem.AAVsrepresentanactivecontrolsolutionastheyresponddirectlytothelocalpressureconditions,openingaspressurefallstoallowareliefairinflowandhencelimitthepressureexcursionsexperiencedbytheappliancetrapseal[9].However,AAVsdonotaddresstheproblemsofpositiveairpressuretransientpropagationwithinbuildingdrainageandventsystemsasaresultofintermittentclosureofthefreeairpaththroughthenetworkorthearrivalofpositivetransientsgeneratedremotelywithinthesewersystem,possiblybysomesurchargeeventdownstream—includingheavyrainfallincombinedsewerapplications.Thedevelopmentofvariablevolumecontainmentattenuators[10]thataredesignedtoabsorbairflowdrivenbypositiveairpressuretransientscompletesthenecessarydeviceprovisiontoallowactiveairpressuretransientcontrolandsuppressiontobeintroducedintothedesignofbuildingdrainageandventsystems,forboth‘standard’buildingsandthoserequiringparticularattentiontobepaidtothesecurityimplicationsofmultiplerooflevelopenstackterminations.Thepositiveairpressureattenuator(PAPA)consistsofavariablevolumebagthatexpandsundertheinfluenceofapositivetransientandthereforeallowssystemairflowstoattenuategradually,thereforereducingthelevelofpositivetransientsgenerated.TogetherwiththeuseofAAVstheintroductionofthePAPAdeviceallowsconsiderationofafullysealedbuildingdrainageandventsystem.Fig.1illustratesbothAAVandPAPAdevices,notethatthewaterlesssheathtrapactsasanAAVundernegativelinepressure.Fig.1.Activeairpressuretransientsuppressiondevicestocontrolbothpositiveandnegativesurges.Activeairpressuretransientsuppressionandcontrolthereforeallowsforlocalizedinterventiontoprotecttrapsealsfrombothpositiveandnegativepressureexcursions.Thishasdistinctadvantagesoverthetraditionalpassiveapproach.Thetimedelayinherentinawaitingthereturnofarelievingreflectionfromaventopentoatmosphereisremovedandtheeffectofthetransientonalltheothersystemtrapspassedduringitspropagationisavoided.2.Mathematicalbasisforthesimulationoftransientpropagationinmulti-stackbuildingdrainagenetworks.ThepropagationofairpressuretransientswithinbuildingdrainageandventsystemsbelongstoawellunderstoodfamilyofunsteadyflowconditionsdefinedbytheStVenantequationsofcontinuityandmomentum,andsolvableviaafinitedifferenceschemeutilizingthemethodofcharacteristicstechnique.Airpressuretransientgenerationandpropagationwithinthesystemasaresultofairentrainmentbythefallingannularwaterinthesystemverticalstacksandthereflectionandtransmissionofthesetransientsatthesystemboundaries,includingopenterminations,connectionstothesewer,appliancetrapsealsandbothAAVandPAPAactivecontroldevices,maybesimulatedwithprovenaccuracy.Thesimulation[11]provideslocalairpressure,velocityandwavespeedinformationthroughoutanetworkattimeanddistanceintervalsasshortas0.001
sand300
mm.Inaddition,thesimulationreplicateslocalappliancetrapsealoscillationsandtheoperationofactivecontroldevices,therebyyieldingdataonnetworkairflowsandidentifyingsystemfailuresandconsequences.Whilethesimulationhasbeenextensivelyvalidated[10],itsusetoindependentlyconfirmthemechanismofSARSvirusspreadwithintheAmoyGardensoutbreakin2003hasprovidedfurtherconfidenceinitspredictions[12].Airpressuretransientpropagationdependsupontherateofchangeofthesystemconditions.Increasingannulardownflowgeneratesanenhancedentrainedairflowandlowersthesystempressure.Retardingtheentrainedairflowgeneratespositivetransients.Externaleventsmayalsopropagatebothpositiveandnegativetransientsintothenetwork.Theannularwaterflowinthe‘wet’stackentrainsanairflowduetotheconditionof‘noslip’establishedbetweentheannularwaterandaircoresurfacesandgeneratestheexpectedpressurevariationdownaverticalstack.Pressurefallsfromatmosphericabovethestackentryduetofrictionandtheeffectsofdrawingairthroughthewatercurtainsformedatdischargingbranchjunctions.Inthelowerwetstackthepressurerecoverstoaboveatmosphericduetothetractionforcesexertedontheairflowpriortofallingacrossthewatercurtainatthestackbase.Theapplicationofthemethodofcharacteristicstothemodellingofunsteadyflowswasfirstrecognizedinthe1960s[13].TherelationshipsdefinedbyJack[14]allowsthesimulationtomodelthetractionforceexertedontheentrainedair.Extensiveexperimentaldataallowedthedefinitionofa‘pseudo-frictionfactor’applicableinthewetstackandoperableacrossthewaterannularflow/entrainedaircoreinterfacetoallowcombineddischargeflowsandtheireffectonairentrainmenttobemodelled.ThepropagationofairpressuretransientsinbuildingdrainageandventsystemsisdefinedbytheStVenantequationsofcontinuityandmomentum[9],(1)(2)Thesequasi-linearhyperbolicpartialdifferentialequationsareamenabletofinitedifferencesolutiononcetransformedviatheMethodofCharacteristicsintofinitedifferencerelationships,Eqs.(3)–(6),thatlinkconditionsatanodeonetimestepinthefuturetocurrentconditionsatadjacentupstreamanddownstreamnodes,Fig.2.Fig.2.StVenantequationsofcontinuityandmomentumallowairflowvelocityandwavespeedtobepredictedonanx-tgridasshown.Note,.FortheC+characteristic:(3)when(4)andtheC-characteristic:(5)when(6)wherethewavespeedcisgivenbyc=(γp/ρ)0.5.(7)Theseequationsinvolvetheairmeanflowvelocity,u,andthelocalwavespeed,c,duetotheinterdependenceofairpressureanddensity.Localpressureiscalculatedas(8)Suitableequationslinklocalpressuretoairflowortotheinterfaceoscillationoftrapseals.Thecaseoftheappliancetrapsealisofparticularimportance.Thetrapsealwatercolumnoscillatesundertheactionoftheappliedpressuredifferentialbetweenthetransientsinthenetworkandtheroomairpressure.TheequationofmotionfortheU-bendtrapsealwatercolumnmaybewrittenatanytimeas(9)Itshouldberecognizedthatwhilethewatercolumnmayriseontheapplianceside,converselyonthesystemsideitcanneverexceedadatumleveldrawnatthebranchconnection.Inpracticaltermstrapsealsaresetat75or50
mmintheUKandotherinternationalstandardsdependentuponappliancetype.Trapsealretentionisthereforedefinedasadepthlessthantheinitialvalue.Manystandards,recognizingthetransientnatureoftrapsealdepletionandtheopportunitythatexistsforre-chargeonappliancedischargeallow25%depletion.Theboundaryequationmayalsobedeterminedbylocalconditions:theAAVopeningandsubsequentlosscoefficientdependsonthelocallinepressureprediction.EmpiricaldataidentifiestheAAVopeningpressure,itslosscoefficientduringopeningandatthefullyopencondition.Appliancetrapsealoscillationistreatedasaboundaryconditiondependentonlocalpressure.Deflectionofthetrapsealtoallowanairpathto,orfrom,theapplianceordisplacementleadingtooscillationalonemaybothbemodelled.Reductionsintrapsealwatermassduringthetransientinteractionmustalsobeincluded.3.RoleofdiversityinsystemoperationIncomplexbuildingdrainagenetworkstheoperationofthesystemappliancestodischargewatertothenetwork,andhenceprovidetheconditionsnecessaryforairentrainmentandpressuretransientpropagation,isentirelyrandom.Notwosystemswillbeidenticalintermsoftheirusageatanytime.Thisdiversityofoperationimpliesthatinter-stackventingpathswillbeestablishediftheindividualstackswithinacomplexbuildingnetworkarethemselvesinterconnected.Itisproposedthatthisdiversityisutilizedtoprovideventingandtoallowseriousconsiderationtobegiventosealeddrainagesystems.Inordertofullyimplementasealedbuildingdrainageandventsystemitwouldbenecessaryforthenegativetransientstobealleviatedbydrawingairintothenetworkfromasecurespaceandnotfromtheexternalatmosphere.Thismaybeachievedbytheuseofairadmittancevalvesoratapredeterminedlocationwithinthebuilding,forexampleanaccessibleloftspace.Similarly,itwouldbenecessarytoattenuatepositiveairpressuretransientsbymeansofPAPAdevices.InitiallyitmightbeconsideredthatthiswouldbeproblematicaspositivepressurecouldbuildwithinthePAPAinstallationsandthereforenegatetheirabilitytoabsorbtransientairflows.ThismayagainbeavoidedbylinkingtheverticalstacksinacomplexbuildingandutilizingthediversityofuseinherentinbuildingdrainagesystemsasthiswillensurethatPAPApressuresarethemselvesalleviatedbyallowingtrappedairtoventthroughtheinterconnectedstackstothesewernetwork.Diversityalsoprotectstheproposedsealedsystemfromsewerdrivenoverpressureandpositivetransients.Acomplexbuildingwillbeinterconnectedtothemainsewernetworkviaanumberofconnectingsmallerboredrains.Adversepressureconditionswillbedistributedandthenetworkinterconnectionwillcontinuetoprovideventingroutes.Theseconceptswillbedemonstratedbyamulti-stacknetwork.4.Simulationoftheoperationofamulti-stacksealedbuildingdrainageandventsystemFig.3illustratesafour-stacknetwork.ThefourstacksarelinkedathighlevelbyamanifoldleadingtoaPAPAandAAVinstallation.WaterdownflowsinanystackgeneratenegativetransientsthatdeflatethePAPAandopentheAAVtoprovideanairflowintothenetworkandouttothesewersystem.PositivepressuregeneratedbyeitherstacksurchargeorsewertransientsareattenuatedbythePAPAandbythediversityofusethatallowsonestack-to-sewerroutetoactasareliefroutefortheotherstacks.Thenetworkillustratedhasanoverallheightof12m.Pressuretransientsgeneratedwithinthenetworkwillpropagateattheacousticvelocityinair.Thisimpliespipeperiods,fromstackbasetoPAPAofapproximately0.08sandfromstackbasetostackbaseofapproximately0.15s.Inordertosimplifytheoutputfromthesimulationnolocaltrapsealprotectionisincluded—forexamplethetrapscouldbefittedwitheitherorbothanAAVandPAPAasexamplesofactivecontrol.Traditionalnetworkswouldofcourseincludepassiveventingwhereseparateventstackswouldbeprovidedtoatmosphere,howeverasealedbuildingwoulddispensewiththisventingarrangement.Fig.3.Fourstackbuildingdrainageandventsystemtodemonstratetheviabilityofasealedbuildingsystem.Ideallythefoursewerconnectionsshownshouldbetoseparatecollectiondrainssothatdiversityinthesewernetworkalsoactstoaidsystemselfventing.Inacomplexbuildingthisrequirementwouldnotbearduousandwouldinallprobabilitybethenorm.Itisenvisagedthatthestackconnectionstothesewernetworkwouldbedistributedandwouldbetoabelowgrounddrainagenetworkthatincreasedindiameterdownstream.Otherconnectionstothenetworkwouldinallprobabilitybefrombuildingsthatincludedthemoretraditionalopenventsystemdesignsothatafurtherlevelofdiversityisaddedtooffsetanydownstreamsewersurchargeeventsoflongduration.Similarconsiderationsledtothecurrentdesignguidancefordwellings.Itisstressedthatthenetworkillustratedisrepresentativeofcomplexbuildingdrainagenetworks.Thesimulationwillallowarangeofappliancedischargeandsewerimposedtransientconditionstobeinvestigated.Thefollowingappliancedischargesandimposedsewertransientsareconsidered:1.w.c.dischargetostacks1–3overaperiod1–6sandaseparatew.c.dischargetostack4between2and7s.2.Aminimumwaterflowineachstackcontinuesthroughoutthesimulation,setat0.1L/s,torepresenttrailingwaterfollowingearliermultipleappliancedischarges.3.A1sdurationstackbasesurchargeeventisassumedtooccurinstack1at2.5s.4.Sequentialsewertransientsimposedatthebaseofeachstackinturnfor1.5sfrom12to18s.Thesimulationwilldemonstratetheefficacyofboththeconceptofactivesurgecontrolandinter-stackventinginenablingthesystemtobesealed,i.e.tohavenohighlevelroofpenetrationsandnoventstacksopentoatmosphereoutsidethebuildingenvelope.Theimposedwaterflowswithinthenetworkarebasedon‘real’systemvalues,beingrepresentativeofcurrentw.c.dischargecharacteristicsintermsofpeakflow,2l/s,overallvolume,6l,andduration,6s.Thesewertransientsat30mmwatergaugearerepresentativebutnotexcessive.HYPERLINK"://sciencedirect/science?_o
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度文化傳媒內(nèi)容制作合同
- 2024年大型活動(dòng)保障車輛租賃合同
- 2024年上海房屋裝修工程分包合同
- 2024年廉潔承諾函:雙方誠(chéng)信自律協(xié)議
- 教育工作者主要先進(jìn)事跡(5篇)
- 中學(xué)生讀書演講稿
- 2024年度質(zhì)量控制合同:MLB棒球帽正品知識(shí)分享
- 2024年工程監(jiān)測(cè)與檢測(cè)合同
- 2024室內(nèi)外演唱會(huì)舞臺(tái)安全檢測(cè)合同
- 2024年國(guó)際商貿(mào)合同的科學(xué)與藝術(shù)
- YY∕T 1782-2021 骨科外固定支架力學(xué)性能測(cè)試方法(高清最新版)
- 西亞教學(xué)設(shè)計(jì)與反思
- 乙酸乙酯的反應(yīng)器設(shè)計(jì)流程圖
- EM277的DP通訊使用詳解
- 耐壓絕緣測(cè)試報(bào)告
- 野獸派 beast 花店 調(diào)研 設(shè)計(jì)-文檔資料
- 水泵房每日巡視檢查表
- 杭州市區(qū)汽車客運(yùn)站臨時(shí)加班管理規(guī)定
- 墊片沖壓模具設(shè)計(jì)畢業(yè)設(shè)計(jì)論文
- 冷庫(kù)工程特點(diǎn)施工難點(diǎn)分析及對(duì)策
- Python-Django開發(fā)實(shí)戰(zhàn)
評(píng)論
0/150
提交評(píng)論