2023屆安徽省宿州市埇橋區(qū)閔賢中學數(shù)學九上期末教學質量檢測模擬試題含解析_第1頁
2023屆安徽省宿州市埇橋區(qū)閔賢中學數(shù)學九上期末教學質量檢測模擬試題含解析_第2頁
2023屆安徽省宿州市埇橋區(qū)閔賢中學數(shù)學九上期末教學質量檢測模擬試題含解析_第3頁
2023屆安徽省宿州市埇橋區(qū)閔賢中學數(shù)學九上期末教學質量檢測模擬試題含解析_第4頁
2023屆安徽省宿州市埇橋區(qū)閔賢中學數(shù)學九上期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,矩形中,,,點為矩形內一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.32.如圖,∠1=∠2,要使△ABC∽△ADE,只需要添加一個條件即可,這個條件不可能是()A.∠B=∠D B.∠C=∠E C. D.3.在半徑為3cm的⊙O中,若弦AB=3,則弦AB所對的圓周角的度數(shù)為()A.30° B.45° C.30°或150° D.45°或135°4.四條線段成比例,其中=3,,,則等于(

)A.2㎝ B.㎝ C. D.8㎝5.下列函數(shù)是二次函數(shù)的是()A.y=2x﹣3 B.y= C.y=(x﹣1)(x+3) D.6.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.47.如圖是某零件的模型,則它的左視圖為()A. B. C. D.8.二次函數(shù)y=x2+2的對稱軸為()A. B. C. D.9.如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且∠D=40°,則∠PCA等于()A.50° B.60° C.65° D.75°10.如圖,在中,D、E分別在AB邊和AC邊上,,M為BC邊上一點(不與B、C重合),連結AM交DE于點N,則()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時針旋轉90°至DE,連接AE、CE,△ADE的面積為3,則BC的長為____________.12.一元二次方程x2﹣3x+2=0的兩根為x1,x2,則x1+x2﹣x1x2=______.13.如圖,在中,點是邊的中點,⊙經過、、三點,交于點,是⊙的直徑,是上的一個點,且,則___________.14.已知等邊△ABC的邊長為4,點P是邊BC上的動點,將△ABP繞點A逆時針旋轉60°得到△ACQ,點D是AC邊的中點,連接DQ,則DQ的最小值是_____.15.將拋物線向右平移2個單位長度,則所得拋物線對應的函數(shù)表達式為______.16.將正整數(shù)按照圖示方式排列,請寫出“2020”在第_____行左起第_____個數(shù).17.“蜀南竹海位于宜賓市境內”是_______事件;(填“確定”或“隨機”)18.順次連接矩形各邊中點所得四邊形為_____.三、解答題(共66分)19.(10分)如圖,直線y=x﹣3與x軸、y軸分別交于點B、點C,經過B、C兩點的拋物線y=﹣x2+mx+n與x軸的另一個交點為A,頂點為P.(1)求3m+n的值;(2)在該拋物線的對稱軸上是否存在點Q,使以C,P,Q為頂點的三角形為等腰三角形?若存在,求出有符合條件的點Q的坐標;若不存在,請說明理由.(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個“M“形狀的新圖象,若直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,求b的值.20.(6分)如圖,在長為32m,寬為20m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪,要使道路的面積比草坪面積少440.(1)求草坪面積;(2)求道路的寬.21.(6分)在不透明的袋中有大小形狀和質地等完全相同的個小球,它們分別標有數(shù)字,從袋中任意摸出一小球(不放回),將袋中的小球攪勻后,再從袋中摸出另一小球.(1)請你用列表或畫樹狀圖的方法表示摸出小球上的數(shù)字可能出現(xiàn)的所有結果;(2)規(guī)定:如果摸出的兩個小球上的數(shù)字都是方程的根,則小明贏;如果摸出的兩個小球上的數(shù)字都不是方程的根,則小亮贏.你認為這個游戲規(guī)則對小明、小亮雙方公平嗎?請說明理由.22.(8分)如圖,直線y=x+3分別交x軸、y軸于點A、C.點P是該直線與雙曲線在第一象限內的一個交點,PB⊥x軸于B,且S△ABP=16.(1)求證:△AOC∽△ABP;(2)求點P的坐標;(3)設點Q與點P在同一個反比例函數(shù)的圖象上,且點Q在直線PB的右側,作QD⊥x軸于D,當△BQD與△AOC相似時,求點Q的橫坐標.23.(8分)某游樂場試營業(yè)期間,每天運營成本為1000元.經統(tǒng)計發(fā)現(xiàn),每天售出的門票張數(shù)(張)與門票售價(元/張)之間滿足一次函數(shù),設游樂場每天的利潤為(元).(利潤=票房收入-運營成本)(1)試求與之間的函數(shù)表達式.(2)游樂場將門票售價定為多少元/張時,每天獲利最大?最大利潤是多少元?24.(8分)已知,在平行四邊形OABC中,OA=5,AB=4,∠OCA=90°,動點P從O點出發(fā)沿射線OA方向以每秒2個單位的速度移動,同時動點Q從A點出發(fā)沿射線AB方向以每秒1個單位的速度移動.設移動的時間為t秒.(1)求直線AC的解析式;(2)試求出當t為何值時,△OAC與△PAQ相似.25.(10分)如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0),C(0,3),點M是拋物線的頂點.(1)求二次函數(shù)的關系式;(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,①求S與m的函數(shù)關系式,寫出自變量m的取值范圍.②當S取得最值時,求點P的坐標;(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.26.(10分)如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°.求CD的長.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】通過矩形的性質和等角的條件可得∠BPC=90°,所以P點應該在以BC為直徑的圓上,即OP=4,根據兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.【點睛】本題考查矩形的性質,勾股定理,線段最小值問題及圓的性質,分析出P點的運動軌跡是解答此題的關鍵.2、D【分析】先求出∠DAE=∠BAC,再根據相似三角形的判定方法分析判斷即可.【詳解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用兩角法:有兩組角對應相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;B、添加∠C=∠E可利用兩角法:有兩組角對應相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;C、添加可利用兩邊及其夾角法:兩組邊對應成比例且夾角相等的兩個三角形相似,故此選項不合題意;D、添加不能證明△ABC∽△ADE,故此選項符合題意;故選:D.【點睛】本題考查相似三角形的判定,解題的關鍵是掌握相似三角形判定方法:兩角法、兩邊及其夾角法、三邊法、平行線法.3、D【分析】根據題意畫出圖形,連接OA和OB,根據勾股定理的逆定理得出∠AOB=90°,再根據圓周角定理和圓內接四邊形的性質求出即可.【詳解】解:如圖所示,連接OA,OB,則OA=OB=3,∵AB=3,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度數(shù)是90°,優(yōu)弧AB的度數(shù)是360°﹣90°=270°,∴弦AB對的圓周角的度數(shù)是45°或135°,故選:D.【點睛】此題主要考查圓周角的求解,解題的關鍵是根據圖形求出圓心角,再得到圓周角的度數(shù).4、A【分析】四條線段a,b,c,d成比例,則=,代入即可求得b的值.【詳解】解:∵四條線段a,b,c,d成比例,

∴=,

∴b===2(cm).

故選A.【點睛】本題考查成比例線段,解題關鍵是正確理解四條線段a,b,c,d成比例的定義.5、C【分析】根據二次函數(shù)的定義作出判斷.【詳解】解:A、該函數(shù)屬于一次函數(shù),故本選項錯誤;B、該函數(shù)未知數(shù)在分母位置,不符合二次函數(shù)的定義,故本選項錯誤;C、該函數(shù)符合二次函數(shù)的定義,故本選項正確;D、該函數(shù)只有一個變量不符合二次函數(shù)的定義,故本選項錯誤;故選:C.【點睛】此題考查的是二次函數(shù)的判斷,掌握二次函數(shù)的定義是解決此題的關鍵.6、B【解析】此題可根據反比例函數(shù)圖象的對稱性得到A、B兩點關于原點對稱,再由S△ABM=1S△AOM并結合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點.7、D【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】從左面看去,是兩個有公共邊的矩形,如圖所示:故選:D.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.視圖中每一個閉合的線框都表示物體上的一個平面,而相連的兩個閉合線框常不在一個平面上.8、B【分析】根據二次函數(shù)的性質解答即可.【詳解】二次函數(shù)y=x2+2的對稱軸為直線.故選B.【點睛】本題考查了二次函數(shù)y=a(x-h)2+k(a,b,c為常數(shù),a≠0)的性質,熟練掌握二次函數(shù)y=a(x-h)2+k的性質是解答本題的關鍵.y=a(x-h)2+k是拋物線的頂點式,a決定拋物線的形狀和開口方向,其頂點是(h,k),對稱軸是x=h.9、C【分析】根據切線的性質,由PD切⊙O于點C得到∠OCD=90°,再利互余計算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根據三角形外角性質計算∠PCA的度數(shù).【詳解】解:∵PD切⊙O于點C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故選C.【點睛】本題考查了切線的性質、等腰三角形的性質、直角三角形的性質、三角形外角性質等知識;熟練掌握切線的性質與三角形外角性質是解題的關鍵.10、C【分析】根據平行線的性質和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根據相似三角形的性質即可得到答案.【詳解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故選C.【點睛】本題考查平行線的性質、相似三角形的判定和性質,解題的關鍵是熟練掌握平行線的性質、相似三角形的判定和性質.二、填空題(每小題3分,共24分)11、1【分析】過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,由旋轉的性質可知△CDF≌△EDG,從而有CF=EG,由△ADE的面積可求EG,得出CF的長,由矩形的性質得BF=AD,根據BC=BF+CF求解.【詳解】解:過D點作DF⊥BC,垂足為F,過E點作EG⊥AD,交AD的延長線與G點,由旋轉的性質可知CD=ED,∵∠EDG+∠CDG=∠CDG+∠FDC=90°,∴∠EDG=∠FDC,又∠DFC=∠G=90°,∴△CDF≌△EDG,∴CF=EG,∵S△ADE=AD×EG=3,AD=2,∴EG=3,則CF=EG=3,依題意得四邊形ABFD為矩形,∴BF=AD=2,∴BC=BF+CF=2+3=1.故答案為1.12、1【分析】利用根與系數(shù)的關系得到x1+x2=3,x1x2=2,然后利用整體代入的方法計算.【詳解】解:根據題意得:x1+x2=3,x1x2=2,

所以x1+x2-x1x2=3-2=1.

故答案為:1.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.13、1【分析】根據題意得到△BDC是等腰三角形,外角和定理可得∠ADC也就是要求的∠AFC.【詳解】連接DE,∵CD是⊙的直徑,∴∠DEC=90°,DE⊥BC,∵E是BC的中點,∴DE是BC的垂直平分線,則BD=CD,∴∠DCE=∠B=24°,∴∠ADC=∠DCE+∠B=1°,∴∠AFC=∠ADC=1°,故填:1.【點睛】本題考查了線段垂直平分線的性質、外角和定理、同弧所對的圓周角相等,綜合性較強,是中考填空題、選擇題的常見題型.14、【分析】根據旋轉的性質,即可得到∠BCQ=120°,當DQ⊥CQ時,DQ的長最小,再根據勾股定理,即可得到DQ的最小值.【詳解】解:如圖,由旋轉可得∠ACQ=∠B=60°,又∵∠ACB=60°,∴∠BCQ=120°,∵點D是AC邊的中點,∴CD=2,當DQ⊥CQ時,DQ的長最小,此時,∠CDQ=30°,∴CQ=CD=1,∴DQ=,∴DQ的最小值是,故答案為.【點睛】本題主要考查線段最小值問題,關鍵是利用旋轉、等邊三角形的性質及勾股定理求解.15、【分析】利用頂點式根據平移不改變二次項系數(shù)可得新拋物線解析式.【詳解】的頂點為(?1,0),∴向右平移2個單位得到的頂點為(1,0),∴把拋物線向右平移2個單位,所得拋物線的表達式為.故答案為:.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟練掌握“左加右減,上加下減”的平移規(guī)則是解題的關鍵.16、611【分析】根據圖形中的數(shù)字,可以寫出前n行的數(shù)字之和,然后即可計算出2020在多少行左起第幾個數(shù)字,本題得以解決.【詳解】解:由圖可知,第一行1個數(shù),第二行2個數(shù),第三行3個數(shù),…,則第n行n個數(shù),故前n個數(shù)字的個數(shù)為:1+2+3+…+n=,∵當n=63時,前63行共有=2016個數(shù)字,2020﹣2016=1,∴2020在第61行左起第1個數(shù),故答案為:61,1.【點睛】本題考查了數(shù)字類規(guī)律探究,從已有數(shù)字確定其變化規(guī)律是解題的關鍵.17、確定【分析】根據“確定定義”或“隨機定義”即可解答.【詳解】“蜀南竹海是國家AAAA級旅游勝地,位于宜賓市境內”,所以是確定事件.故答案為:確定.【點睛】本題考查必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,確定事件包括必然事件、不可能事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,.18、菱形【詳解】解:如圖,連接AC、BD,∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點,∴EF=GH=AC,F(xiàn)G=EH=BD(三角形的中位線等于第三邊的一半),∵矩形ABCD的對角線AC=BD,∴EF=GH=FG=EH,∴四邊形EFGH是菱形.故答案為菱形.考點:三角形中位線定理;菱形的判定;矩形的性質.三、解答題(共66分)19、(1)9;(2)點Q的坐標為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)b=﹣3或﹣.【分析】(1)求出B、C的坐標,將點B、C的坐標分別代入拋物線表達式,即可求解;(2)分CP=PQ、CP=CQ、CQ=PQ,分別求解即可;(3)分兩種情況,分別求解即可.【詳解】解:(1)直線y=x﹣3,令y=0,則x=3,令x=0,則y=﹣3,故點B、C的坐標分別為(3,0)、(0,﹣3),將點B、C的坐標分別代入拋物線表達式得:,解得:,則拋物線的表達式為:y=﹣x2+4x﹣3,則點A坐標為(1,0),頂點P的坐標為(2,1),3m+n=12﹣3=9;(2)①當CP=CQ時,C點縱坐標為PQ中點的縱坐標相同為﹣3,故此時Q點坐標為(2,﹣7);②當CP=PQ時,∵PC=,∴點Q的坐標為(2,1﹣)或(2,1+);③當CQ=PQ時,過該中點與CP垂直的直線方程為:y=﹣x﹣,當x=2時,y=﹣,即點Q的坐標為(2,﹣);故:點Q的坐標為(2,1﹣2)或(2,1+2)或(2,﹣)或(2,﹣7);(3)圖象翻折后的點P對應點P′的坐標為(2,﹣1),①在如圖所示的位置時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點,此時C、P′、B三點共線,b=﹣3;②當直線y=x+b與翻折后的圖象只有一個交點時,此時,直線y=x+b與該“M”形狀的圖象部分恰好有三個公共點;即:x2﹣4x+3=x+b,△=52﹣4(3﹣b)=0,解得:b=﹣.即:b=﹣3或﹣.【點睛】本題考查的是二次函數(shù)綜合運用,涉及的知識點有待定系數(shù)法求二次函數(shù)解析式,一次函數(shù)的圖像與性質,勾股定理,等腰三角形的定義,二次函數(shù)的翻折變換及二次函數(shù)與一元二次方程的關系.難點在于(3),關鍵是通過數(shù)形變換,確定變換后圖形與直線的位置關系,難度較大.本題也考查了分類討論及數(shù)形結合的數(shù)學思想.20、(1)540;(2)2m【分析】(1)根據地面的長寬得到地面的面積,再根據草坪面積加道路面積等于地面面積列方程,求解即可得到答案;(2)設道路的寬為ym,根據題意列方程求解即可得到答案;【詳解】解:(1)設草坪面積為xcm,得,解得,所以,草坪面積為540.(2)設道路的寬為ym,原圖經過平移轉化為圖1.

因此,根據題意得整理得解得或(不合題意,舍去)因此,道路的寬為2m.【點睛】考查了一元二次方程、一元一次方程的實際應用應用,對于面積問題應熟記各種圖形的面積公式.本題中按原圖進行計算比較復雜時,可根據圖形的性質適當?shù)倪M行轉換化簡,然后根據題意列出方程求解.21、(1)見解析;(2)公平,理由見解析.【分析】(1)可以利用樹狀圖表示出所有的可能出現(xiàn)的結果;

(2)分別求得兩人贏的概率,判斷是否相等即可求解.【詳解】(1)利用樹狀圖表示為:;(2)公平;解方程得:,根據樹狀圖知,共有12種情況,小明贏的情況有:3,4和4,3兩種,因而小明贏的概率是:,小亮贏的情況有:1,2和2,1兩種,小亮贏的概率是:小亮贏的概率是:,兩人贏的機會相等,因而雙方公平.【點睛】本題主要考查了列表法和樹狀圖法、游戲公平性的判斷,一元二次方程的求解.解答本題的關鍵是明確題意,畫出相應的樹狀圖,求出相應的概率.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.22、(1)證明見解析;(2)點P的坐標為(2,4);(3)點Q的橫坐標為:或.【分析】(1)利用PB∥OC,即可證明三角形相似;(2)由一次函數(shù)解析式,先求點A、C的坐標,由△AOC∽△ABP,利用線段比求出BP,AB的值,從而可求出點P的坐標即可;(3)把P坐標代入求出反比例函數(shù),設Q點坐標為(n,),根據△BQD與△AOC相似分兩種情況,利用線段比聯(lián)立方程組求出n的值,即可確定出Q坐標.【詳解】(1)證明:∵PB⊥x軸,OC⊥x軸,∴OC∥PB,∴△AOC∽△ABP;(2)解:對于直線y=x+3,令x=0,得y=3;令y=0,得x=-6;∴A(-6,0),C(0,4),∴OA=6,OC=3.∵△AOC∽△ABP,∴,∵S△ABP=16,S△AOC=,∴,∴,即,∴PB=4,AB=8,∴OB=2,∴點P的坐標為:(2,4).(3)設反比例函數(shù)的解析式為:y=,把P(2,4)代入,得k=xy=2×4=8,∴y=.點Q在雙曲線上,可設點Q的坐標為:(n,)(n>2),則BD=,QD=,①當△BQD∽△ACO時,,即,整理得:,解得:或;②當△BQD∽△CAO時,,即,整理得:,解得:,(舍去),綜上①②所述,點Q的橫坐標為:1+或1+.【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,一次函數(shù)與反比例函數(shù)的交點,以及坐標與圖形性質,熟練掌握待定系數(shù)法是解本題的關鍵.23、(1)w=;(2)游樂場將門票售價定為25元/張時,每天獲利最大,最大利潤是1500元【分析】(1)根據及利潤=票房收入-運營成本即可得出化簡即可.(2)根據二次函數(shù)的性質及對稱軸公式即可得最大值,及x的值.【詳解】(1)根據題意,得.(2)∵中,,∴有最大值.當時,最大,最大值為1500.答:游樂場將門票售價定為25元/張時,每天獲利最大,最大利潤是1500元.【點睛】本題考查了二次函數(shù)的實際應用,結合二次函數(shù)的性質即可得到最大值.24、(1);(2)當t=或時,△OAC與△APQ相似.【分析】(1)要求直線AC的解析式,需要求出點A、點C的坐標,可以利用等積法求得C點的縱坐標,利用勾股定理求得橫坐標,利用待定系數(shù)法求得直線的解析式;(2)對于相似要分情況進行討論,根據對應線段成比例可求得t的數(shù)值.【詳解】解:(1)過點C作CE⊥OA,垂足為E,在Rt△OCA中,AC==3,∴5×CE=3×4,∴CE=,在Rt△OCE中,OE==,∴C(,),A(5,0),設AC的解析式為y=kx+b,則,解得:,∴;(2)當0≤t≤2.5時,P在OA上,因為∠OAQ≠90°,故此時△OAC與△PAQ不可能相似.當t>2.5時,①若∠APQ=90°,則△APQ∽△OCA,故==,∴=,∴t=,∵t>2.5,∴t=符合條件.②若∠AQP=90°,則△APQ∽△OAC,故==,∴=,∴t=,∵t>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論