2021年全國高考乙卷數(shù)學(xué)(文)試題(解析版)_第1頁
2021年全國高考乙卷數(shù)學(xué)(文)試題(解析版)_第2頁
2021年全國高考乙卷數(shù)學(xué)(文)試題(解析版)_第3頁
2021年全國高考乙卷數(shù)學(xué)(文)試題(解析版)_第4頁
2021年全國高考乙卷數(shù)學(xué)(文)試題(解析版)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

絕密★啟用前河南省2021年普通高等學(xué)校招生全國統(tǒng)一考試文科數(shù)學(xué)注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上.2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑.如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號.回答非選擇題時,將答案寫在答題卡上.寫在本試卷上無效.3.考試結(jié)束后,將本試卷和答題卡一并交回.一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.已知全集,集合,則()A. B. C. D.【答案】A【解析】【分析】首先進(jìn)行并集運算,然后進(jìn)行補集運算即可.【詳解】由題意可得:,則.故選:A.2.設(shè),則()A. B. C. D.【答案】C【解析】【分析】由題意結(jié)合復(fù)數(shù)的運算法則即可求得z的值.【詳解】由題意可得:.故選:C.3.已知命題﹔命題﹐,則下列命題中為真命題的是()A. B. C. D.【答案】A【解析】【分析】由正弦函數(shù)的有界性確定命題的真假性,由指數(shù)函數(shù)的知識確定命題的真假性,由此確定正確選項.【詳解】由于,所以命題為真命題;由于在上為增函數(shù),,所以,所以命題為真命題;所以為真命題,、、為假命題.故選:A.4.函數(shù)的最小正周期和最大值分別是()A.和 B.和2 C.和 D.和2【答案】C【解析】【分析】利用輔助角公式化簡,結(jié)合三角函數(shù)周期性和值域求得函數(shù)的最小正周期和最大值.【詳解】由題,,所以的最小正周期為,最大值為.故選:C.5.若滿足約束條件則的最小值為()A.18 B.10 C.6 D.4【答案】C【解析】【分析】由題意作出可行域,變換目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得解.【詳解】由題意,作出可行域,如圖陰影部分所示,由可得點,轉(zhuǎn)換目標(biāo)函數(shù)為,上下平移直線,數(shù)形結(jié)合可得當(dāng)直線過點時,取最小值,此時.故選:C.6.()A. B. C. D.【答案】D【解析】【分析】由題意結(jié)合誘導(dǎo)公式可得,再由二倍角公式即可得解.【詳解】由題意,.故選:D.7.在區(qū)間隨機取1個數(shù),則取到的數(shù)小于的概率為()A. B. C. D.【答案】B【解析】【分析】根據(jù)幾何概型的概率公式即可求出.【詳解】設(shè)“區(qū)間隨機取1個數(shù)”,對應(yīng)集合為:,區(qū)間長度為,“取到的數(shù)小于”,對應(yīng)集合為:,區(qū)間長度為,所以.故選:B.【點睛】本題解題關(guān)鍵是明確事件“取到的數(shù)小于”對應(yīng)的范圍,再根據(jù)幾何概型的概率公式即可準(zhǔn)確求出.8.下列函數(shù)中最小值為4的是()A. B.C. D.【答案】C【解析】【分析】根據(jù)二次函數(shù)的性質(zhì)可判斷選項不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出不符合題意,符合題意.【詳解】對于A,,當(dāng)且僅當(dāng)時取等號,所以其最小值為,A不符合題意;對于B,因為,,當(dāng)且僅當(dāng)時取等號,等號取不到,所以其最小值不為,B不符合題意;對于C,因為函數(shù)定義域為,而,,當(dāng)且僅當(dāng),即時取等號,所以其最小值為,C符合題意;對于D,,函數(shù)定義域為,而且,如當(dāng),,D不符合題意.故選:C.【點睛】本題解題關(guān)鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結(jié)合有關(guān)函數(shù)的性質(zhì)即可解出.9.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B. C. D.【答案】B【解析】【分析】分別求出選項的函數(shù)解析式,再利用奇函數(shù)的定義即可.【詳解】由題意可得,對于A,不是奇函數(shù);對于B,是奇函數(shù);對于C,,定義域不關(guān)于原點對稱,不是奇函數(shù);對于D,,定義域不關(guān)于原點對稱,不是奇函數(shù).故選:B【點睛】本題主要考查奇函數(shù)定義,考查學(xué)生對概念的理解,是一道容易題.10.在正方體中,P為的中點,則直線與所成的角為()A. B. C. D.【答案】D【解析】【分析】平移直線至,將直線與所成的角轉(zhuǎn)化為與所成的角,解三角形即可.【詳解】如圖,連接,因為∥,所以或其補角為直線與所成的角,因為平面,所以,又,,所以平面,所以,設(shè)正方體棱長為2,則,,所以.故選:D11.設(shè)B是橢圓的上頂點,點P在C上,則的最大值為()A. B. C. D.2【答案】A【解析】【分析】設(shè)點,由依題意可知,,,再根據(jù)兩點間的距離公式得到,然后消元,即可利用二次函數(shù)的性質(zhì)求出最大值.【詳解】設(shè)點,因,,所以,而,所以當(dāng)時,的最大值為.故選:A.【點睛】本題解題關(guān)鍵是熟悉橢圓的簡單幾何性質(zhì),由兩點間的距離公式,并利用消元思想以及二次函數(shù)的性質(zhì)即可解出.易錯點是容易誤認(rèn)為短軸的相對端點是橢圓上到上定點B最遠(yuǎn)的點,或者認(rèn)為是橢圓的長軸的端點到短軸的端點距離最大,這些認(rèn)識是錯誤的,要注意將距離的平方表示為二次函數(shù)后,自變量的取值范圍是一個閉區(qū)間,而不是全體實數(shù)上求最值..12.設(shè),若為函數(shù)的極大值點,則()A. B. C. D.【答案】D【解析】【分析】先考慮函數(shù)的零點情況,注意零點左右附近函數(shù)值是否編號,結(jié)合極大值點的性質(zhì),對進(jìn)行分類討論,畫出圖象,即可得到所滿足的關(guān)系,由此確定正確選項.【詳解】若,則為單調(diào)函數(shù),無極值點,不符合題意,故.有和兩個不同零點,且在左右附近是不變號,在左右附近是變號的.依題意,為函數(shù)的極大值點,在左右附近都是小于零的.當(dāng)時,由,,畫出的圖象如下圖所示:由圖可知,,故.當(dāng)時,由時,,畫出的圖象如下圖所示:由圖可知,,故.綜上所述,成立.故選:D【點睛】本小題主要考查三次函數(shù)的圖象與性質(zhì),利用數(shù)形結(jié)合的數(shù)學(xué)思想方法可以快速解答.二、填空題:本題共4小題,每小題5分,共20分.13.已知向量,若,則_________.【答案】【解析】【分析】利用向量平行的充分必要條件得到關(guān)于的方程,解方程即可求得實數(shù)的值.【詳解】由題意結(jié)合向量平行的充分必要條件可得:,解方程可得:.故答案為:.14.雙曲線的右焦點到直線的距離為________.【答案】【解析】【分析】先求出右焦點坐標(biāo),再利用點到直線的距離公式求解.【詳解】由已知,,所以雙曲線的右焦點為,所以右焦點到直線距離為.故答案為:15.記的內(nèi)角A,B,C的對邊分別為a,b,c,面積為,,,則________.【答案】【解析】【分析】由三角形面積公式可得,再結(jié)合余弦定理即可得解.【詳解】由題意,,所以,所以,解得(負(fù)值舍去).故答案為:.16.以圖①為正視圖,在圖②③④⑤中選兩個分別作為側(cè)視圖和俯視圖,組成某個三棱錐的三視圖,則所選側(cè)視圖和俯視圖的編號依次為_________(寫出符合要求的一組答案即可).【答案】③④(答案不唯一)【解析】【分析】由題意結(jié)合所給的圖形確定一組三視圖的組合即可.【詳解】選擇側(cè)視圖為③,俯視圖為④,如圖所示,長方體中,,分別為棱的中點,則正視圖①,側(cè)視圖③,俯視圖④對應(yīng)的幾何體為三棱錐.故答案為:③④.【點睛】三視圖問題解決的關(guān)鍵之處是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系.三、解答題.共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟,第17~21題為必考題,每個試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.某廠研制了一種生產(chǎn)高精產(chǎn)品的設(shè)備,為檢驗新設(shè)備生產(chǎn)產(chǎn)品的某項指標(biāo)有無提高,用一臺舊設(shè)備和一臺新設(shè)備各生產(chǎn)了10件產(chǎn)品,得到各件產(chǎn)品該項指標(biāo)數(shù)據(jù)如下:舊設(shè)備9.810.310.010.29.99.810.010.110.29.7新設(shè)備10.110.410.110.010.110.310.610.510.410.5舊設(shè)備和新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的樣本平均數(shù)分別記為和,樣本方差分別記為和.(1)求,,,;(2)判斷新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備是否有顯著提高(如果,則認(rèn)為新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高,否則不認(rèn)為有顯著提高).【答案】(1);(2)新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高.【解析】【分析】(1)根據(jù)平均數(shù)和方差的計算方法,計算出平均數(shù)和方差.(2)根據(jù)題目所給判斷依據(jù),結(jié)合(1)的結(jié)論進(jìn)行判斷.【詳解】(1),,,.(2)依題意,,,,所以新設(shè)備生產(chǎn)產(chǎn)品的該項指標(biāo)的均值較舊設(shè)備有顯著提高.18.如圖,四棱錐的底面是矩形,底面,M為的中點,且.(1)證明:平面平面;(2)若,求四棱錐的體積.【答案】(1)證明見解析;(2).【解析】【分析】(1)由底面可得,又,由線面垂直的判定定理可得平面,再根據(jù)面面垂直的判定定理即可證出平面平面;(2)由(1)可知,,由平面知識可知,,由相似比可求出,再根據(jù)四棱錐體積公式即可求出.【詳解】(1)因為底面,平面,所以,又,,所以平面,而平面,所以平面平面.(2)由(1)可知,平面,所以,從而,設(shè),,則,即,解得,所以.因為底面,故四棱錐的體積為.【點睛】本題第一問解題關(guān)鍵是找到平面或平面的垂線,結(jié)合題目條件,所以垂線可以從中產(chǎn)生,稍加分析即可判斷出平面,從而證出;第二問關(guān)鍵是底面矩形面積的計算,利用第一問的結(jié)論結(jié)合平面幾何知識可得出,從而求出矩形的另一個邊長,從而求得該四棱錐的體積.19.設(shè)是首項為1的等比數(shù)列,數(shù)列滿足.已知,,成等差數(shù)列.(1)求和的通項公式;(2)記和分別為和的前n項和.證明:.【答案】(1),;(2)證明見解析.【解析】【分析】利用等差數(shù)列的性質(zhì)及得到,解方程即可;利用公式法、錯位相減法分別求出,再作差比較即可.【詳解】因為是首項為1的等比數(shù)列且,,成等差數(shù)列,所以,所以,即,解得,所以,所以.(2)證明:由(1)可得,,①,②①②得,所以,所以,所以.【點晴】本題主要考查數(shù)列求和,涉及到等差數(shù)列的性質(zhì),錯位相減法求數(shù)列的和,考查學(xué)生的數(shù)學(xué)運算能力,是一道中檔題,其中證明不等式時采用作差法,或者作商法要根據(jù)式子得結(jié)構(gòu)類型靈活選擇,關(guān)鍵是要看如何消項化簡的更為簡潔.20.已知拋物線的焦點F到準(zhǔn)線的距離為2.(1)求C的方程;(2)已知O為坐標(biāo)原點,點P在C上,點Q滿足,求直線斜率的最大值.【答案】(1);(2)最大值為.【解析】【分析】(1)由拋物線焦點與準(zhǔn)線的距離即可得解;(2)設(shè),由平面向量的知識可得,進(jìn)而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點,準(zhǔn)線方程為,由題意,該拋物線焦點到準(zhǔn)線的距離為,所以該拋物線的方程為;(2)設(shè),則,所以,由在拋物線上可得,即,所以直線的斜率,當(dāng)時,;當(dāng)時,,當(dāng)時,因為,此時,當(dāng)且僅當(dāng),即時,等號成立;當(dāng)時,;綜上,直線的斜率的最大值為.【點睛】關(guān)鍵點點睛:解決本題的關(guān)鍵是利用平面向量的知識求得點坐標(biāo)的關(guān)系,在求斜率的最值時要注意對取值范圍的討論.21.已知函數(shù).(1)討論的單調(diào)性;(2)求曲線過坐標(biāo)原點的切線與曲線的公共點的坐標(biāo).【答案】(1)答案見解析;(2)和.【解析】【分析】(1)首先求得導(dǎo)函數(shù)解析式,然后分類討論導(dǎo)函數(shù)的符號即可確定原函數(shù)的單調(diào)性;(2)首先求得導(dǎo)數(shù)過坐標(biāo)原點的切線方程,然后將原問題轉(zhuǎn)化為方程求解的問題,據(jù)此即可求得公共點坐標(biāo).【詳解】(1)由函數(shù)的解析式可得:,導(dǎo)函數(shù)的判別式,當(dāng)時,在R上單調(diào)遞增,當(dāng)時,的解為:,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增;綜上可得:當(dāng)時,在R上單調(diào)遞增,當(dāng)時,在,上單調(diào)遞增,在上單調(diào)遞減.(2)由題意可得:,,則切線方程為:,切線過坐標(biāo)原點,則:,整理可得:,即:,解得:,則,切線方程為:,與聯(lián)立得,化簡得,由于切點的橫坐標(biāo)1必然是該方程的一個根,是的一個因式,∴該方程可以分解因式為解得,,綜上,曲線過坐標(biāo)原點的切線與曲線的公共點的坐標(biāo)為和.【點睛】本題考查利用導(dǎo)數(shù)研究含有參數(shù)的函數(shù)的單調(diào)性問題,和過曲線外一點所做曲線的切線問題,注意單調(diào)性研究中對導(dǎo)函數(shù),要依據(jù)其零點的不同情況進(jìn)行分類討論;再求切線與函數(shù)曲線的公共點坐標(biāo)時,要注意除了已經(jīng)求出的切點,還可能有另外的公共點(交點),要通過聯(lián)立方程求解,其中得到三次方程求解時要注意其中有一個實數(shù)根是求出的切點的橫坐標(biāo),這樣就容易通過分解因式求另一個根.三次方程時高考壓軸題中的常見問題,不必恐懼,一般都能容易找到其中一個根,然后在通過分解因式的方法求其余的根.(二)選考題:共10分.請考生在第22、23題中任選一題作答.如果多做.則按所做的第一題計分.[選修4-4:坐標(biāo)系與參數(shù)方程]22.在直角坐標(biāo)系中,的圓心為,半徑為1.(1)寫出的一個參數(shù)方程;(2)過點作的兩條切線.以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求這兩條切線的極坐標(biāo)方程.【答案】(1),(為參數(shù));(2)或.【解析】【分析】(1)直接利用圓心及半徑可得的圓的參數(shù)方程;(2)先求得過(4,1)的圓的切線方程,再利用極坐標(biāo)與直角坐標(biāo)互化公式化簡即可.【詳解】(1)由題意,的普通方程為,所以的參數(shù)方程為,(為參數(shù))(2)由題意,切線的斜率一定存在,設(shè)切線方程為,即,由圓心到直線的距離等于1可得,解得,所以切線方程為或,將,代入化簡得或【點晴】本題主要考查直角坐標(biāo)方程與極坐標(biāo)方程的互化,涉及到直線與圓的位置關(guān)系,考查學(xué)生的數(shù)學(xué)運算能力,是一道基礎(chǔ)題.[選修4—5:不等式選講]23.已知函數(shù).(1)當(dāng)時,求不等式的解集;(2)若,求a的取值范圍.【答案】(1).(2).【解析】【分析】(1)利用絕對值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論