2022屆白城市重點中學中考數(shù)學四模試卷含解析_第1頁
2022屆白城市重點中學中考數(shù)學四模試卷含解析_第2頁
2022屆白城市重點中學中考數(shù)學四模試卷含解析_第3頁
2022屆白城市重點中學中考數(shù)學四模試卷含解析_第4頁
2022屆白城市重點中學中考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正確的是()A. B. C. D.2.由一些相同的小立方塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小立方塊有()A.3塊 B.4塊 C.6塊 D.9塊3.據(jù)統(tǒng)計,某住宅樓30戶居民五月份最后一周每天實行垃圾分類的戶數(shù)依次是:27,30,29,25,26,28,29,那么這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.25和30 B.25和29 C.28和30 D.28和294.如圖,已知正五邊形內(nèi)接于,連結(jié),則的度數(shù)是()A. B. C. D.5.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間6.設點和是反比例函數(shù)圖象上的兩個點,當<<時,<,則一次函數(shù)的圖象不經(jīng)過的象限是A.第一象限 B.第二象限 C.第三象限 D.第四象限7.x=1是關(guān)于x的方程2x﹣a=0的解,則a的值是()A.﹣2 B.2 C.﹣1 D.18.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數(shù)據(jù)整理后,畫出頻數(shù)分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數(shù)有()A.12 B.48 C.72 D.969.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m10.已知二次函數(shù)的與的不符對應值如下表:且方程的兩根分別為,,下面說法錯誤的是().A., B.C.當時, D.當時,有最小值11.如圖,實數(shù)﹣3、x、3、y在數(shù)軸上的對應點分別為M、N、P、Q,這四個數(shù)中絕對值最小的數(shù)對應的點是()A.點M B.點N C.點P D.點Q12.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.46二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知n>1,M=,N=,P=,則M、N、P的大小關(guān)系為.14.如圖,在△ABC中,AB=AC,BC=8.是△ABC的外接圓,其半徑為5.若點A在優(yōu)弧BC上,則的值為_____________.15.的倒數(shù)是_____________.16.一個盒子內(nèi)裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.17.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.18.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.20.(6分)嘉淇在做家庭作業(yè)時,不小心將墨汁弄倒,恰好覆蓋了題目的一部分:計算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,經(jīng)詢問,王老師告訴題目的正確答案是1.(1)求被覆蓋的這個數(shù)是多少?(2)若這個數(shù)恰好等于2tan(α﹣15)°,其中α為三角形一內(nèi)角,求α的值.21.(6分)(1)如圖1,正方形ABCD中,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點G,求證:AE=BF;(2)如圖2,矩形ABCD中,AB=2,BC=3,點E,F(xiàn)分別在邊CD,AD上,AE⊥BF于點M,探究AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(2)的基礎上,若AB=m,BC=n,其他條件不變,請直接寫出AE與BF的數(shù)量關(guān)系;.22.(8分)如圖,在Rt△ABC中,,點在邊上,⊥,點為垂足,,∠DAB=450,tanB=.(1)求的長;(2)求的余弦值.23.(8分)如圖,在平面直角坐標中,點O是坐標原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.(1)求直線AB的解析式;(2)根據(jù)圖象寫出當y1>y2時,x的取值范圍;(3)若點P在y軸上,求PA+PB的最小值.24.(10分)某學校為增加體育館觀眾坐席數(shù)量,決定對體育館進行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)25.(10分)某學校八、九兩個年級各有學生180人,為了解這兩個年級學生的體質(zhì)健康情況,進行了抽樣調(diào)查,具體過程如下:收集數(shù)據(jù)從八、九兩個年級各隨機抽取20名學生進行體質(zhì)健康測試,測試成績(百分制)如下:八年級7886748175768770759075798170748086698377九年級9373888172819483778380817081737882807040整理、描述數(shù)據(jù)將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):成績(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級人數(shù)0011171九年級人數(shù)1007102(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差八年級78.377.57533.6九年級7880.5a52.1(1)表格中a的值為______;請你估計該校九年級體質(zhì)健康優(yōu)秀的學生人數(shù)為多少?根據(jù)以上信息,你認為哪個年級學生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)26.(12分)已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.(1)求證:四邊形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的長.27.(12分)如圖,把兩個邊長相等的等邊△ABC和△ACD拼成菱形ABCD,點E、F分別是CB、DC延長上的動點,且始終保持BE=CF,連結(jié)AE、AF、EF.求證:AEF是等邊三角形.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】∵AD//BC,DE//AB,∴四邊形ABED是平行四邊形,∴,,∴選項A、C錯誤,選項D正確,選項B錯誤,故選D.2、B【解析】分析:從俯視圖中可以看出最底層小正方體的個數(shù)及形狀,從主視圖和左視圖可以看出每一層小正方體的層數(shù)和個數(shù),從而算出總的個數(shù).解答:解:從俯視圖可得最底層有3個小正方體,由主視圖可得有2層上面一層是1個小正方體,下面有2個小正方體,從左視圖上看,后面一層是2個小正方體,前面有1個小正方體,所以此幾何體共有四個正方體.故選B.3、D【解析】【分析】根據(jù)中位數(shù)和眾數(shù)的定義進行求解即可得答案.【詳解】對這組數(shù)據(jù)重新排列順序得,25,26,27,28,29,29,30,處于最中間是數(shù)是28,∴這組數(shù)據(jù)的中位數(shù)是28,在這組數(shù)據(jù)中,29出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)是29,故選D.【點睛】本題考查了中位數(shù)和眾數(shù)的概念,熟練掌握眾數(shù)和中位數(shù)的概念是解題的關(guān)鍵.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),一組數(shù)據(jù)按從小到大(或從大到?。┡判蚝?,位于最中間的數(shù)(或中間兩數(shù)的平均數(shù))是這組數(shù)據(jù)的中位數(shù).4、C【解析】

根據(jù)多邊形內(nèi)角和定理、正五邊形的性質(zhì)求出∠ABC、CD=CB,根據(jù)等腰三角形的性質(zhì)求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.【點睛】本題考查的是正多邊形和圓、多邊形的內(nèi)角和定理,掌握正多邊形和圓的關(guān)系、多邊形內(nèi)角和等于(n-2)×180°是解題的關(guān)鍵.5、C【解析】

求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數(shù)的大小和二次根式的性質(zhì),解此題的關(guān)鍵是得出<<,題目比較好,難度不大.6、A【解析】∵點和是反比例函數(shù)圖象上的兩個點,當<<1時,<,即y隨x增大而增大,∴根據(jù)反比例函數(shù)圖象與系數(shù)的關(guān)系:當時函數(shù)圖象的每一支上,y隨x的增大而減??;當時,函數(shù)圖象的每一支上,y隨x的增大而增大.故k<1.∴根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系:一次函數(shù)的圖象有四種情況:①當,時,函數(shù)的圖象經(jīng)過第一、二、三象限;②當,時,函數(shù)的圖象經(jīng)過第一、三、四象限;③當,時,函數(shù)的圖象經(jīng)過第一、二、四象限;④當,時,函數(shù)的圖象經(jīng)過第二、三、四象限.因此,一次函數(shù)的,,故它的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故選A.7、B【解析】試題解析:把x=1代入方程1x-a=0得1-a=0,解得a=1.故選B.考點:一元一次方程的解.8、C【解析】

解:根據(jù)圖形,身高在169.5cm~174.5cm之間的人數(shù)的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數(shù)有300×24%=72(人).故選C.9、A【解析】【分析】由根與系數(shù)的關(guān)系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關(guān)系,新定義運算等,理解并能運用新定義運算是解題的關(guān)鍵.10、C【解析】

分別結(jié)合圖表中數(shù)據(jù)得出二次函數(shù)對稱軸以及圖像與x軸交點范圍和自變量x與y的對應情況,進而得出答案.【詳解】A、利用圖表中x=0,1時對應y的值相等,x=﹣1,2時對應y的值相等,∴x=﹣2,5時對應y的值相等,∴x=﹣2,y=5,故此選項正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時y=﹣1;x=2時,y=1,∴1<x2<2,故此選項正確;C、由題意可得出二次函數(shù)圖像向上,∴當x1<x<x2時,y<0,故此選項錯誤;D、∵利用圖表中x=0,1時對應y的值相等,∴當x=時,y有最小值,故此選項正確,不合題意.所以選C.【點睛】此題主要考查了拋物線與x軸的交點以及利用圖像上點的坐標得出函數(shù)的性質(zhì),利用數(shù)形結(jié)合得出是解題關(guān)鍵.11、D【解析】∵實數(shù)-3,x,3,y在數(shù)軸上的對應點分別為M、N、P、Q,

∴原點在點M與N之間,

∴這四個數(shù)中絕對值最大的數(shù)對應的點是點Q.

故選D.12、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應用與三角形的面積的相關(guān)知識點.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質(zhì)和利用作差法比較兩個代數(shù)式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.14、2【解析】【分析】作高線AD,由等腰三角形的性質(zhì)可知D為BC的中點,即AD為BC的垂直平分線,根據(jù)垂徑定理,AD過圓心O,由BC的長可得出BD的長,根據(jù)勾股定理求出半徑,繼而可得AD的長,在直角三角形ABD中根據(jù)正切的定義求解即可.試題解析:如圖,作AD⊥BC,垂足為D,連接OB,∵AB=AC,∴BD=CD=BC=×8=4,∴AD垂直平分BC,∴AD過圓心O,在Rt△OBD中,OD==3,∴AD=AO+OD=8,在Rt△ABD中,tan∠ABC==2,故答案為2.【點睛】本題考查了垂徑定理、等腰三角形的性質(zhì)、正切的定義等知識,綜合性較強,正確添加輔助線構(gòu)造直角三角形進行解題是關(guān)鍵.15、【解析】先把帶分數(shù)化成假分數(shù)可得:,然后根據(jù)倒數(shù)的概念可得:的倒數(shù)是,故答案為:.16、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:

∵共有12種等可能的結(jié)果,兩次都摸到白球的有2種情況,

∴兩次都摸到白球的概率是:=.

故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關(guān)鍵是掌握用樹狀圖法求概率.17、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經(jīng)過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.18、50【解析】

根據(jù)BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據(jù)半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關(guān)鍵三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)OA=.【解析】

(1)連接OB,證明∠ABE=∠ADB,可得∠ABE=∠BDC,則∠ADB=∠BDC;

(2)證明△AEB∽△CBD,AB=x,則BD=2x,可求出AB,則答案可求出.【詳解】(1)證明:連接OB,∵BE為⊙O的切線,∴OB⊥BE,∴∠OBE=90°,∴∠ABE+∠OBA=90°,∵OA=OB,∴∠OBA=∠OAB,∴∠ABE+∠OAB=90°,∵AD是⊙O的直徑,∴∠OAB+∠ADB=90°,∴∠ABE=∠ADB,∵四邊形ABCD的外接圓為⊙O,∴∠EAB=∠C,∵∠E=∠DBC,∴∠ABE=∠BDC,∴∠ADB=∠BDC,即DB平分∠ADC;(2)解:∵tan∠ABE=,∴設AB=x,則BD=2x,∴,∵∠BAE=∠C,∠ABE=∠BDC,∴△AEB∽△CBD,∴,∴,解得x=3,∴AB=x=15,∴OA=.【點睛】本題考查切線的性質(zhì)、解直角三角形、勾股定理等知識,解題的關(guān)鍵是學會添加常用輔助線解決問題.20、(1)2;(2)α=75°.【解析】

(1)直接利用絕對值的性質(zhì)以及負指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)分別化簡得出答案;(2)直接利用特殊角的三角函數(shù)值計算得出答案.【詳解】解:(1)原式=1+﹣1+﹣□+1=1,∴□=1+﹣1++1﹣1=2;(2)∵α為三角形一內(nèi)角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=,∴α﹣15°=60°,∴α=75°.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.21、(1)證明見解析;(2)AE=23BF,(3)AE=m【解析】

(1)根據(jù)正方形的性質(zhì),可得∠ABC與∠C的關(guān)系,AB與BC的關(guān)系,根據(jù)兩直線垂直,可得∠AMB的度數(shù),根據(jù)直角三角形銳角的關(guān)系,可得∠ABM與∠BAM的關(guān)系,根據(jù)同角的余角相等,可得∠BAM與∠CBF的關(guān)系,根據(jù)ASA,可得△ABE≌△BCF,根據(jù)全等三角形的性質(zhì),可得答案;(2)根據(jù)矩形的性質(zhì)得到∠ABC=∠C,由余角的性質(zhì)得到∠BAM=∠CBF,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)結(jié)論:AE=mn【詳解】(1)證明:∵四邊形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,∠BAE=∠CBFAB=CB∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:如圖2中,結(jié)論:AE=23理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=23(3)結(jié)論:AE=mn理由:∵四邊形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴AEBF∴AE=mn【點睛】本題考查了四邊形綜合題、相似三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),熟練掌握全等三角形或相似三角形的判定和性質(zhì)是解題的關(guān)鍵.22、(1)3;(2)【解析】分析:(1)由題意得到三角形ADE為等腰直角三角形,在直角三角形DEB中,利用銳角三角函數(shù)定義求出DE與BE之比,設出DE與BE,由AB=7求出各自的值,確定出DE即可;(2)在直角三角形中,利用勾股定理求出AD與BD的長,根據(jù)tanB的值求出cosB的值,確定出BC的長,由BC﹣BD求出CD的長,利用銳角三角函數(shù)定義求出所求即可.詳解:(1)∵DE⊥AB,∴∠DEA=90°.又∵∠DAB=41°,∴DE=AE.在Rt△DEB中,∠DEB=90°,tanB==,設DE=3x,那么AE=3x,BE=4x.∵AB=7,∴3x+4x=7,解得:x=1,∴DE=3;(2)在Rt△ADE中,由勾股定理,得:AD=3,同理得:BD=1.在Rt△ABC中,由tanB=,可得:cosB=,∴BC=,∴CD=,∴cos∠CDA==,即∠CDA的余弦值為.點睛:本題考查了解直角三角形,涉及的知識有:銳角三角函數(shù)定義,勾股定理,等腰直角三角形的判定與性質(zhì),熟練掌握各自的性質(zhì)是解答本題的關(guān)鍵.23、(1)y=﹣x+4;(2)1<x<1;(1)2.【解析】

(1)依據(jù)反比例函數(shù)y2=(x>0)的圖象交于A(1,m)、B(n,1)兩點,即可得到A(1,1)、B(1,1),代入一次函數(shù)y1=kx+b,可得直線AB的解析式;(2)當1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,即可得到當y1>y2時,x的取值范圍是1<x<1;(1)作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,利用勾股定理即可得到BC的長.【詳解】(1)A(1,m)、B(n,1)兩點坐標分別代入反比例函數(shù)y2=(x>0),可得m=1,n=1,∴A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函數(shù)y1=kx+b,可得,解得,∴直線AB的解析式為y=-x+4;(2)觀察函數(shù)圖象,發(fā)現(xiàn):當1<x<1時,正比例函數(shù)圖象在反比例函數(shù)圖象的上方,∴當y1>y2時,x的取值范圍是1<x<1.(1)如圖,作點A關(guān)于y軸的對稱點C,連接BC交y軸于點P,則PA+PB的最小值等于BC的長,過C作y軸的平行線,過B作x軸的平行線,交于點D,則Rt△BCD中,BC=,∴PA+PB的最小值為2.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,根據(jù)函數(shù)圖象的上下位置關(guān)系結(jié)合交點的橫坐標,得出不等式的取值范圍是解答此題的關(guān)鍵.24、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設計方案不滿足安全要求”.【詳解】解:施工方提供的設計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設計方案不滿足安全要求.25、(1)81;(2)108人;(3)見解析.【解析】

(1)根據(jù)眾數(shù)的概念解答;(2)求出九年級學生體質(zhì)健康的優(yōu)秀率,計算即可;(3)分別從不同的角度進行評價.【詳解】解:(1)由測試成績可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級學生體質(zhì)健康的優(yōu)秀率為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論