版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.下列事件中,不可能事件的是()A.投擲一枚均勻的硬幣10次,正面朝上的次數(shù)為5次B.任意一個五邊形的外角和等于C.從裝滿白球的袋子里摸出紅球D.大年初一會下雨2.如圖,在平面直角坐標(biāo)系中,以為圓心作⊙,⊙與軸交于、,與軸交于點,為⊙上不同于、的任意一點,連接、,過點分別作于,于.設(shè)點的橫坐標(biāo)為,.當(dāng)點在⊙上順時針從點運動到點的過程中,下列圖象中能表示與的函數(shù)關(guān)系的部分圖象是()A. B. C. D.3.不等式的解為()A. B. C. D.4.sin30°的值為()A. B. C.1 D.5.如圖,AC是電桿AB的一根拉線,現(xiàn)測得BC=6米,∠ABC=90°,∠ACB=52°,則拉線AC的長為(
)米.A.
B.
C.
D.6.如圖,A,B,C,D是⊙O上的四個點,B是的中點,M是半徑OD上任意一點.若∠BDC=40°,則∠AMB的度數(shù)不可能是()A.45° B.60° C.75° D.85°7.如圖是一個半徑為5cm的圓柱形輸油管的橫截面,若油面寬AB=8cm,則油面的深度為()A.1cm B.1.5cm C.2cm D.2.5cm8.已知、是一元二次方程的兩個實數(shù)根,則的值為()A.-1 B.0 C.1 D.29.以半徑為2的圓內(nèi)接正三角形、正方形、正六邊形的邊心距為三邊作三角形,則()A.不能構(gòu)成三角形 B.這個三角形是等腰三角形C.這個三角形是直角三角形 D.這個三角形是鈍角三角形10.如圖,點是的邊上的一點,若添加一個條件,使與相似,則下列所添加的條件錯誤的是()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標(biāo)系中,正方形ABCD的面積為20,頂點A在y軸上,頂點C在x軸上,頂點D在雙曲線的圖象上,邊CD交y軸于點E,若,則k的值為______.12.如圖,在中,.動點以每秒個單位的速度從點開始向點移動,直線從與重合的位置開始,以相同的速度沿方向平行移動,且分別與邊交于兩點,點與直線同時出發(fā),設(shè)運動的時間為秒,當(dāng)點移動到與點重合時,點和直線同時停止運動.在移動過程中,將繞點逆時針旋轉(zhuǎn),使得點的對應(yīng)點落在直線上,點的對應(yīng)點記為點,連接,當(dāng)時,的值為___________.13.計算:2sin30°+tan45°=_____.14.如圖所示,已知:點,,.在內(nèi)依次作等邊三角形,使一邊在軸上,另一個頂點在邊上,作出的等邊三角形分別是第1個,第2個,第3個,…,則第個等邊三角形的周長等于.15.如圖,拋物線y=﹣x2+mx+2m2(m>0)與x軸交于A,B兩點,點A在點B的左邊,C是拋物線上一個動點(點C與點A,B不重合),D是OC的中點,連結(jié)BD并延長,交AC于點E,則的值是_____________.16.方程的根是_____.17.已知,是方程的兩個實根,則______.18.如圖,一拋物線與軸相交于,兩點,其頂點在折線段上移動,已知點,,的坐標(biāo)分別為,,,若點橫坐標(biāo)的最小值為0,則點橫坐標(biāo)的最大值為______.三、解答題(共66分)19.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B,(1)求證:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的長.20.(6分)如圖,拋物線交軸于兩點,交軸于點,點的坐標(biāo)為,直線經(jīng)過點.(1)求拋物線的函數(shù)表達(dá)式;(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標(biāo);(3)過點的直線交直線于點,連接當(dāng)直線與直線的一個夾角等于的2倍時,請直接寫出點的坐標(biāo).21.(6分)如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖象過等邊三角形的頂點,,點在反比例函數(shù)圖象上,連接.(1)求反比例函數(shù)的表達(dá)式;(2)若四邊形的面積是,求點的坐標(biāo).22.(8分)如圖,在中,,,點均在邊上,且.(1)將繞A點逆時針旋轉(zhuǎn),可使AB與AC重合,畫出旋轉(zhuǎn)后的圖形,在原圖中補(bǔ)出旋轉(zhuǎn)后的圖形.(2)求和的度數(shù).23.(8分)已知:AB為⊙O的直徑.(1)作OB的垂直平分線CD,交⊙O于C、D兩點;(2)在(1)的條件下,連接AC、AD,則△ACD為三角形.24.(8分)如圖,菱形ABCD的頂點A,D在直線l上,∠BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)α(0°<α<30°),得到菱形AB′C′D′,B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當(dāng)MN∥B′D′時,解答下列問題:(1)求證:△AB′M≌△AD′N;(2)求α的大小.25.(10分)先化簡,再求值:1-,其中a、b滿足.26.(10分)在學(xué)校組織的科學(xué)素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為、、、四個等級,其中相應(yīng)等級的得分依次為分,分,分,分.馬老師將九年級一班和二班的成績整理并繪制成如下的統(tǒng)計圖:請你根據(jù)以上提供的信息解答下列問題:(1)此次競賽中二班成績在分及其以上的人數(shù)是_______人;(2)補(bǔ)全下表中、、的值:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)方差一班二班(3)學(xué)校準(zhǔn)備在這兩個班中選一個班參加市級科學(xué)素養(yǎng)競賽,你建議學(xué)校選哪個班參加?說說你的理由.
參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】解:A、投擲一枚硬幣10次,有5次正面朝上是隨機(jī)事件;
B、任意一個五邊形的外角和是360°是確定事件;
C、從裝滿白球的袋子里摸出紅球是不可能事件;
D、大年初一會下雨是隨機(jī)事件,
故選:C.【點睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.2、A【分析】由題意,連接PC、EF,利用勾股定理求出,然后得到AB的長度,由垂徑定理可得,點E是AQ中點,點F是BQ的中點,則EF是△QAB的中位線,即為定值,由,即可得到答案.【詳解】解:如圖,連接PC,EF,則∵點P為(3,0),點C為(0,2),∴,∴半徑,∴;∵于,于,∴點E是AQ中點,點F是BQ的中點,∴EF是△QAB的中位線,∴為定值;∵AB為直徑,則∠AQB=90°,∴四邊形PFQE是矩形,∴,為定值;∴當(dāng)點在⊙上順時針從點運動到點的過程中,y的值不變;故選:A.【點睛】本題考查了圓的性質(zhì),垂徑定理,矩形的判定和性質(zhì),勾股定理,以及三角形的中位線定理,正確作出輔助線,根據(jù)所學(xué)性質(zhì)進(jìn)行求解,正確找到是解題的關(guān)鍵.3、B【分析】根據(jù)一元一次不等式的解法進(jìn)行求解即可.【詳解】解:移項得,,合并得,,系數(shù)化為1得,.故選:B.【點睛】本題考查一元一次不等式的解法,屬于基礎(chǔ)題型,明確解法是關(guān)鍵.4、B【分析】直接根據(jù)特殊角的三角函數(shù)值進(jìn)行選擇.【詳解】sin30°=,故選:B.【點睛】此題考查特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.5、C【分析】根據(jù)余弦定義:即可解答.【詳解】解:,,米,米;故選C.【點睛】此題考查了解直角三角形的應(yīng)用,將其轉(zhuǎn)化為解直角三角形的問題是本題的關(guān)鍵,用到的知識點是余弦的定義.6、D【解析】解:∵B是弧AC的中點,∴∠AOB=2∠BDC=80°.又∵M(jìn)是OD上一點,∴∠AMB≤∠AOB=80°.則不符合條件的只有85°.故選D.點睛:本題考查了圓周角定理,正確理解圓周角定理求得∠AOB的度數(shù)是關(guān)鍵.7、A【分析】過點O作OD⊥AB于點D,根據(jù)垂徑定理可求出AD的長,再在Rt△AOD中,利用勾股定理求出OD的長即可得到答案.【詳解】解:過點O作OD⊥AB于點D,∵AB=8cm,∴AD=AB=4cm,在Rt△AOD中,OD===2(cm),∴油面深度為:5-2=1(cm)故選:A.【點睛】本題考查了垂徑定理和勾股定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.8、C【分析】根據(jù)根與系數(shù)的關(guān)系即可求出的值.【詳解】解:∵、是一元二次方程的兩個實數(shù)根∴故選C.【點睛】此題考查的是根與系數(shù)的關(guān)系,掌握一元二次方程的兩根之和=是解決此題的關(guān)鍵.9、C【分析】由于內(nèi)接正三角形、正方形、正六邊形是特殊內(nèi)角的多邊形,可構(gòu)造直角三角形分別求出邊心距的長,由勾股定理逆定理可得該三角形是直角三角形,問題得解.【詳解】解:如圖1,∵OC=2,∴OD=2×sin30°=1;如圖2,∵OB=2,∴OE=2×sin45°=;如圖3,∵OA=2,∴OD=2×cos30°=,則該三角形的三邊分別為:1,,,∵12+()2=()2,∴該三角形是直角三角形,故選:C.【點睛】本題主要考查多邊形與圓,解答此題要明確:多邊形的半徑、邊心距、中心角等概念,根據(jù)解直角三角形的知識解答是解題的關(guān)鍵.10、D【分析】在與中,已知有一對公共角∠B,只需再添加一組對應(yīng)角相等,或夾已知等角的兩組對應(yīng)邊成比例,即可判斷正誤.【詳解】A.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;B.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;C.已知∠B=∠B,若,則可以證明兩三角形相似,正確,不符合題意;D.若,但夾的角不是公共等角∠B,則不能證明兩三角形相似,錯誤,符合題意,故選:D.【點睛】本題考查相似三角形的判定,熟練掌握相似三角形的判定條件是解答的關(guān)鍵.二、填空題(每小題3分,共24分)11、4【分析】過D作DF⊥x軸并延長FD,過A作AG⊥DF于點G,利用正方形的性質(zhì)易證△ADG≌△DCF,得到AG=DF,設(shè)D點橫坐標(biāo)為m,則OF=AG=DF=m,易得OE為△CDF的中位線,進(jìn)而得到OF=OC,然后利用勾股定理建立方程求出,進(jìn)而求出k.【詳解】如圖,過D作DF⊥x軸并延長FD,過A作AG⊥DF于點G,∵四邊形ABCD為正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF設(shè)D點橫坐標(biāo)為m,則OF=AG=DF=m,∴D點坐標(biāo)為(m,m)∵OE∥DF,CE=ED∴OE為△CDF的中位線,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D點坐標(biāo)為(m,m)∴故答案為:4.【點睛】本題考查反比例函數(shù)與幾何的綜合問題,需要熟練掌握正方形的性質(zhì),全等三角形的判定和性質(zhì),中位線的判定和性質(zhì)以及勾股定理,解題的關(guān)鍵是作出輔助線,利用全等三角形推出點D的橫縱坐標(biāo)相等.12、【分析】由題意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,進(jìn)而求得EF的長;如圖,由點P的對應(yīng)點M落在EF上,點F的對應(yīng)點為點N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,過N做NG⊥BC,可得EN=BN,最后利用三角函數(shù)的關(guān)系建立方程求解即可;【詳解】解:設(shè)運動的時間為秒時;由題意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如圖:過N做NG⊥BC,垂足為G∵將繞點逆時針旋轉(zhuǎn),使得點的對應(yīng)點落在直線上,點的對應(yīng)點記為點,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案為.【點睛】本題考查了相似三角形的判定及性質(zhì)的運用、三角函數(shù)值的運用、勾股定理的運用,靈活利用相似三角形的性質(zhì)和勾股定理是解答本題的關(guān)鍵.13、1.【分析】根據(jù)解特殊角的三角函數(shù)值即可解答.【詳解】原式=1×+1=1.【點睛】本題考查特殊角的三角函數(shù)值,解題的關(guān)鍵是牢記這些特殊三角函數(shù)值.14、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1為等邊三角形,∠A1AB1=60°,∴∠COA1=30°,則∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此類推,第n個等邊三角形的邊長等于.第n個等邊三角形的周長等于.15、【分析】過點O作OH∥AC交BE于點H,根據(jù)A、B的坐標(biāo)可得OA=m,OB=2m,AB=3m,證明OH=CE,將根據(jù),可得出答案.【詳解】解:過點O作OH∥AC交BE于點H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中點,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案為:.【點睛】本題主要考查了拋物線與x軸的交點問題,解題的關(guān)鍵是過點O作OH∥AC交BE于點H,此題有一定的難度.16、0和-4.【分析】根據(jù)因式分解即可求解.【詳解】解∴x1=0,x2=-4,故填:0和-4.【點睛】此題主要考查一元二次方程的求解,解題的關(guān)鍵是熟知一元二次方程的解法.17、27【分析】根據(jù)根與系數(shù)的關(guān)系,由x12+x22=(x1+x2)2?2x1x2,即可得到答案.【詳解】∵x1,x2是方程
x2?5x?1=0
的兩根,∴x1+x2=5,x1?x2=?1,∴x12+x22=(x1+x2)2?2x1x2=52-2×(-1)=27;故答案為27.【點睛】本題考查了一元二次方程的根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟練掌握根與系數(shù)的關(guān)系,并正確進(jìn)行化簡計算.18、7【分析】當(dāng)點橫坐標(biāo)的最小值為0時,拋物線頂點在C點,據(jù)此可求出拋物線的a值,再根據(jù)點橫坐標(biāo)的最大值時,頂點在E點,求出此時的拋物線即可求解.【詳解】當(dāng)點橫坐標(biāo)的最小值為0時,拋物線頂點在C點,設(shè)該拋物線的解析式為:y=a(x+2)2+8,代入點B(0,0)得:0=a(x+2)2+8,則a=?2,即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-2(x+2)2+8.當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)取E,則此時拋物線的解析式:y=-2(x?8)2+2,令y=0,解得x1=7,x2=9∴點A的橫坐標(biāo)的最大值為7.故答案為7.【點睛】此題主要考查二次函數(shù)的平移問題,解題的關(guān)鍵是熟知待定系數(shù)法求解解析式.三、解答題(共66分)19、(1)見解析(2)AF=2【詳解】(1)證明:∵四邊形ABCD是平行四邊形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四邊形ABCD是平行四邊形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=20、(1);(2)當(dāng)時,有最大值,最大值為,點坐標(biāo)為;(3)點的坐標(biāo)或.【分析】(1)利用點B的坐標(biāo),用待定系數(shù)法即可求出拋物線的函數(shù)表達(dá)式;(2)如圖1,過點P作軸,交BC于點H,設(shè),H,求出的面積即可求解;(3)如圖2,作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于,交AC于E,利用等腰三角形的性質(zhì)和三角形外角性質(zhì)得到,再確定N(3,?2),AC的解析式為y=5x?5,E點坐標(biāo)為,利用兩直線垂直的問題可設(shè)直線的解析式為,把E代入求出b,得到直線的解析式為,則解方程組得點的坐標(biāo);作點關(guān)于N點的對稱點,利用對稱性得到,設(shè),根據(jù)中點坐標(biāo)公式得到,然后求出x即可得到的坐標(biāo),從而得到滿足條件的點M的坐標(biāo).【詳解】(1)把代入得;(2)過點P作軸,交BC于點H,設(shè),則點H的坐標(biāo)為,∴,∴,∴當(dāng)時,有最大值,最大值為,此時點坐標(biāo)為.(3)作AN⊥BC于N,NH⊥x軸于H,作AC的垂直平分線交BC于,交AC于E,∵,
∴,
∴,
∵△ANB為等腰直角三角形,
∴,
∴N(3,?2),
由可得AC的解析式為y=5x?5,E點坐標(biāo)為,
設(shè)直線的解析式為,把E代入得,解得,
∴直線的解析式為,
解方程組得,則;
如圖2,在直線BC上作點關(guān)于N點的對稱點,則,設(shè),
∵,
∴,
∴,
綜上所述,點M的坐標(biāo)為或.【點睛】本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、會利用待定系數(shù)法求函數(shù)解析式,會運用分類討論的思想解決數(shù)學(xué)問題.21、(1)(2)【解析】(1)先求出B的坐標(biāo),根據(jù)系數(shù)k的幾何意義即可求得k=,從而求得反比例函數(shù)的表達(dá)式;(2)根據(jù)題意可,求出,再設(shè),求出t,即可解答【詳解】(1),反比例函數(shù)的表達(dá)式為(2)設(shè)【點睛】此題考查了反比例函數(shù)解析式,不規(guī)則圖形面積.,解題關(guān)鍵在于求出B的坐標(biāo)22、(1)見解析;(2),.【分析】(1)以C為圓心BD為半徑作弧,與以A為圓心AD為半徑作弧的交點即為G點,然后連線即可得解;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠CAG=∠BAD,∠ACG=∠ABD,然后根據(jù)題意即可得各角的大小.【詳解】(1)△ACG如圖:(2)∵,,∴∠B+∠ACB=90°,∠BAD+∠CAE=45°,又∵為繞A點逆時針旋轉(zhuǎn)所得,∴∠CAG=∠BAD,∠ACG=∠ABD,∴,.【點睛】本題主要考查畫旋轉(zhuǎn)圖形,旋轉(zhuǎn)的性質(zhì),解此題的關(guān)鍵在于熟練掌握其知識點.23、(1)見解析;(2)等邊.【分析】(1)利用基本作圖,作CD垂直平分OB;
(2)根據(jù)垂直平分線的性質(zhì)得到OC=CB,DO=DB,則可證明△OCB、△OBD都是等邊三角形,所以∠ABC=∠ABD=60°,利用圓周角定理得到∠ADC=∠ACD=60°,則可判斷△ACD為等邊三角形.【詳解】解:(1)如圖,CD為所作;(2)如圖,連接OC、OD、BC、BD,∵CD垂直平分OB,∴OC=CB,DO=DB,∴OC=BC=OB=BD,∴△OCB、△OBD都是等邊三角形,∴∠ABC=∠ABD=60°,∴∠ADC=∠ACD=60°,∴△ACD為等邊三角形.故答案是:等邊.【點睛】本題考查了基本作圖及圓周角定理:證明△OCB、△OBD是等邊三角形是解本題的關(guān)鍵.24、(1)見解析;(2)α=15°【分析】(1)利用四邊形AB′C′D′是菱形,得到AB′=B′C′=C′D′=AD′,根據(jù)∠B′AD′=∠B′C′D′=60°,可得△AB′D′,△B′C′D′是等邊三角形,進(jìn)而得到△C′MN是等邊三角形,則有C′M=C′N,MB′=ND′,利用SAS即可證明△AB′M≌△AD′N;(2)由(1)得∠B′AM=∠D′AN,利用∠CAD=∠BAD=30°,即可解決問題.【詳解】(1)∵四邊形AB′C′D′是菱形,∴AB′=B′C′=C′D′=AD′,∵∠B′AD′=∠B′C′D′=60°,∴△AB′D′,△B′C′D′是等邊三角形,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 河南省商丘市柘城縣2024-2025學(xué)年七年級上學(xué)期期末歷史試卷( 含答案)
- 安徽省皖東南四校聯(lián)盟2024-2025學(xué)年九年級上學(xué)期第三次聯(lián)考(期末)歷史試卷( 含答案)
- 11年1月合同法必修課考題
- 2024版橋架系統(tǒng)工程安裝協(xié)議版B版
- 2024年高校院長崗位聘任協(xié)議3篇
- 福建省南平市將口鎮(zhèn)中學(xué)高三物理下學(xué)期期末試卷含解析
- 2024版醫(yī)院人員聘用協(xié)議書
- 2024訂餐合作的協(xié)議書
- 2024版環(huán)保污水處理設(shè)備購銷協(xié)議版
- 2024版公司核心成員股權(quán)獎勵合同模板版B版
- 期末復(fù)習(xí)試題(試題)-2024-2025學(xué)年五年級上冊數(shù)學(xué)蘇教版
- 自由戰(zhàn)爭-簡體素材表
- 新概念第三冊課文60全(打印版)
- 四年級硬筆書法教案教學(xué)設(shè)計共16課
- 自考現(xiàn)代漢語復(fù)習(xí)資料精品資料
- 論財務(wù)共享服務(wù)模式下財務(wù)稽核體系
- 19鍋爐水壓試驗記錄
- 人教版小學(xué)1-6年級日積月累(全)
- 盤扣式腳手架(內(nèi)部培訓(xùn))(課堂PPT)
- 袖閥管注漿工法
- 設(shè)計說明書——曲柄連桿機(jī)構(gòu)
評論
0/150
提交評論