人教版八年級數(shù)學下冊:平行四邊形的邊角性質演講教學課件_第1頁
人教版八年級數(shù)學下冊:平行四邊形的邊角性質演講教學課件_第2頁
人教版八年級數(shù)學下冊:平行四邊形的邊角性質演講教學課件_第3頁
人教版八年級數(shù)學下冊:平行四邊形的邊角性質演講教學課件_第4頁
人教版八年級數(shù)學下冊:平行四邊形的邊角性質演講教學課件_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第十八章

平行四邊形18.1.1第1課時

平行四邊形的邊角性質

第十八章平行四邊形18.1.1第1課時平行四邊形的邊1情景導入觀察下圖,平行四邊形在生活中無處不在情景導入觀察下圖,平行四邊形在生活中無處不在2你還能舉出其他的例子嗎?你還能舉出其他的例子嗎?3獲取新知知識點一:平行四邊形的概念1.定義:兩組對邊分別平行的四邊形叫做平行四邊形.語言表述:∵AD∥BC,AB∥DC,∴四邊形ABCD是平行四邊形.2.平行四邊形用“”表示,如圖,平行四邊形ABCD記作

ABCD

(要注意字母順序).ABDC人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點一:平行四邊形的概念1.定義:兩組對邊分別平行4∠A與∠C,∠B與∠D叫做對角.AB與CD,AD與BC叫做對邊.ABDC“對邊”與“對角”是一組角,注意與三角形中“角的對邊”的區(qū)別人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學∠A與∠C,∠B與∠D叫做對角.AB與CD,AD與BC叫做對5例題講解例1

如圖,DC∥GH

∥AB,DA∥EF∥CB,圖中的平行四邊形有多少個?將它們表示出來.DABCHGFE解:∵DC∥GH∥AB,DA∥EF∥CB,∴根據平行四邊形的定義可以判定圖中共有9個平行四邊形,即AEKG,ABHG,AEFD,GKFD,

BEKH,CHKF,BEFC,CDGH,ABCD.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學例題講解例1如圖,DC∥GH∥AB,DA∥EF∥6獲取新知知識點二:平行四邊形的邊角性質活動1

請用尺子等工具度量你手中平行四邊形的四條邊,并記錄下數(shù)據,你能發(fā)現(xiàn)AB與DC,AD與BC之間的數(shù)量關系嗎?ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點二:平行四邊形的邊角性質活動1請用尺子等7ABCD測得AB=DC,AD=BC.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學ABCD測得AB=DC,AD=BC.人教版八年級數(shù)學下冊:平8活動2

請用量角器等工具度量你手中平行四邊形的四個角,并記錄下數(shù)據,你能發(fā)現(xiàn)∠A與∠C,∠B與∠D之間的數(shù)量關系嗎?ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學活動2請用量角器等工具度量你手中平行四邊形的四個角,并記9ABCD測得∠A

=∠C,∠B=∠D.通過觀察和度量,我們猜想:平行四邊形的對邊相等;平行四邊形的對角相等.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學ABCD測得∠A=∠C,∠B=∠D.通過觀察和度量,我們10已知:四邊形ABCD是平行四邊形.求證:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.證明:如圖,連接AC.∵四邊形ABCD是平行四邊形,∴AD∥BC,AB

CD,∴∠1=∠2,∠3=∠4.又∵AC是△ABC和△CDA的公共邊,∴△ABC≌△CDA,∴AD=BC,AB=CD,∠ABC=∠ADC.∵∠BAD=∠1+∠4,∠BCD=∠2+∠3,∴∠BAD=∠BCD.ABCD1432連接平行四邊形的對角線,從而將四邊形問題轉化為三角形問題.充分體現(xiàn)了轉化的數(shù)學思想.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學已知:四邊形ABCD是平行四邊形.證明:如圖,連接AC.AB11邊的性質:平行四邊形對邊平行;平行四邊形對邊相等.角的性質:平行四邊形對角相等;平行四邊形鄰角互補.數(shù)學表達式:如圖,∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AB=CD,AD=BC;

∠A=∠C,∠B=∠D,∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠A+∠D=180°.ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學邊的性質:平行四邊形對邊平行;平行四邊形對邊相等.ABCD人12例題講解例2

如圖,在

ABCD中,DE⊥AB,BF⊥CD,垂足分別是E,F(xiàn).求證:AE=CF.證明:∵四邊形ABCD是平行四邊形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF(AAS),∴AE=CF.DABCFE人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學例題講解例2如圖,在ABCD中,DE⊥AB,BF13獲取新知知識點三:平行線間的距離點與點之間的距離:兩點之間線段的長度;直線外一點到直線的距離:該點向直線作垂線段的長度人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點三:平行線間的距離點與點之間的距離:兩點之間線14如圖,a//b,c//d,c,d與a,b分別相交于A,B,C,D四點.由平行四邊形的概念和性質可知,四邊形ABDC是平行四邊形,AB=CD.也就是說,兩條平行線之間的任何兩條平行線段都相等.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學如圖,a//b,c//d,c,d與a,b分別相交于A15兩條平行線間的距離:

兩條平行線中,一條直線上任意一點到另一條直線的距離本質:點到直線的距離兩條平行線間的距離的性質:兩條平行線間的距離處處相等BFEAnmCD∵m//n,AB、CD、EF垂直于n,交n于B、D、F,交

m于A、C、E.∴AB=CD=EF人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學兩條平行線間的距離:兩條平行線間的距離的性質:BFEAnmC16隨堂演練1.如圖,?ABCD中,EF∥GH∥BC,MN∥AB,則圖中平行四邊形的個數(shù)是(

)A.13B.14C.15D.18D人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學隨堂演練1.如圖,?ABCD中,EF∥GH∥BC,MN∥A173.在?ABCD中,AD=3

cm,AB=2

cm,則?ABCD的周長是 (

)A.10

cm

B.6

cmC.5

cm

D.4

cmA人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學3.在?ABCD中,AD=3cm,AB=2cm,則?AB184.如圖,在?ABCD中,M是BC延長線上的一點,若∠A=135°,則∠MCD的度數(shù)是(

)A.45°B.55°C.65°D.75°A人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學4.如圖,在?ABCD中,M是BC延長線上的一點,A人教版195.如圖,在□ABCD中.若∠A+∠C=200°,則∠A=_____,∠B=______.6.如圖,直線AE//BD,點C在BD上,若AE=5,BD=8,△ABD的面積為16,則△ACE的面積為

.10ABCDE100°80°人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學5.如圖,在□ABCD中.若∠A+∠C=200°,則∠A207.如圖所示,在?ABCD中,若∠A∶∠B=1∶3,求∠D的度數(shù).解:在?ABCD中,∠D=∠B,∠A+∠B=180°.∵∠A∶∠B=1∶3,∴∠B=180°×=135°,∴∠D=∠B=135°.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學7.如圖所示,在?ABCD中,若∠A∶∠B=1∶3,求∠D218.已知在平行四邊形ABCD中,DE平分∠ADC,

BF平分∠ABC.求證:AE=CF.

ABDCEF證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD=BC.∴∠CDE=∠DEA,∠CFB=∠FBA.又∵DE,BF分別平分∠ADC,∠ABC,∴∠CDE=∠ADE,∠CBF=∠FBA,∴

∠DEA=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=BC,∴AE=CF.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學8.已知在平行四邊形ABCD中,DE平分∠ADC,

BF平分22課堂小結平行四邊形定義兩組對邊分別平行的四邊形性質兩組對邊分別平行,相等兩條平行線間的平行線段相等兩條平行線間的距離兩組對角分別相等,鄰角互補人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學課堂小結平行定義兩組對邊分別平行的四邊形性質兩組對邊分別平行23第十八章

平行四邊形18.1.1第1課時

平行四邊形的邊角性質

第十八章平行四邊形18.1.1第1課時平行四邊形的邊24情景導入觀察下圖,平行四邊形在生活中無處不在情景導入觀察下圖,平行四邊形在生活中無處不在25你還能舉出其他的例子嗎?你還能舉出其他的例子嗎?26獲取新知知識點一:平行四邊形的概念1.定義:兩組對邊分別平行的四邊形叫做平行四邊形.語言表述:∵AD∥BC,AB∥DC,∴四邊形ABCD是平行四邊形.2.平行四邊形用“”表示,如圖,平行四邊形ABCD記作

ABCD

(要注意字母順序).ABDC人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點一:平行四邊形的概念1.定義:兩組對邊分別平行27∠A與∠C,∠B與∠D叫做對角.AB與CD,AD與BC叫做對邊.ABDC“對邊”與“對角”是一組角,注意與三角形中“角的對邊”的區(qū)別人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學∠A與∠C,∠B與∠D叫做對角.AB與CD,AD與BC叫做對28例題講解例1

如圖,DC∥GH

∥AB,DA∥EF∥CB,圖中的平行四邊形有多少個?將它們表示出來.DABCHGFE解:∵DC∥GH∥AB,DA∥EF∥CB,∴根據平行四邊形的定義可以判定圖中共有9個平行四邊形,即AEKG,ABHG,AEFD,GKFD,

BEKH,CHKF,BEFC,CDGH,ABCD.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學例題講解例1如圖,DC∥GH∥AB,DA∥EF∥29獲取新知知識點二:平行四邊形的邊角性質活動1

請用尺子等工具度量你手中平行四邊形的四條邊,并記錄下數(shù)據,你能發(fā)現(xiàn)AB與DC,AD與BC之間的數(shù)量關系嗎?ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點二:平行四邊形的邊角性質活動1請用尺子等30ABCD測得AB=DC,AD=BC.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學ABCD測得AB=DC,AD=BC.人教版八年級數(shù)學下冊:平31活動2

請用量角器等工具度量你手中平行四邊形的四個角,并記錄下數(shù)據,你能發(fā)現(xiàn)∠A與∠C,∠B與∠D之間的數(shù)量關系嗎?ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學活動2請用量角器等工具度量你手中平行四邊形的四個角,并記32ABCD測得∠A

=∠C,∠B=∠D.通過觀察和度量,我們猜想:平行四邊形的對邊相等;平行四邊形的對角相等.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學ABCD測得∠A=∠C,∠B=∠D.通過觀察和度量,我們33已知:四邊形ABCD是平行四邊形.求證:AD=BC,AB=CD,∠BAD=∠BCD,∠ABC=∠ADC.證明:如圖,連接AC.∵四邊形ABCD是平行四邊形,∴AD∥BC,AB

CD,∴∠1=∠2,∠3=∠4.又∵AC是△ABC和△CDA的公共邊,∴△ABC≌△CDA,∴AD=BC,AB=CD,∠ABC=∠ADC.∵∠BAD=∠1+∠4,∠BCD=∠2+∠3,∴∠BAD=∠BCD.ABCD1432連接平行四邊形的對角線,從而將四邊形問題轉化為三角形問題.充分體現(xiàn)了轉化的數(shù)學思想.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學已知:四邊形ABCD是平行四邊形.證明:如圖,連接AC.AB34邊的性質:平行四邊形對邊平行;平行四邊形對邊相等.角的性質:平行四邊形對角相等;平行四邊形鄰角互補.數(shù)學表達式:如圖,∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC,AB=CD,AD=BC;

∠A=∠C,∠B=∠D,∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠A+∠D=180°.ABCD人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學邊的性質:平行四邊形對邊平行;平行四邊形對邊相等.ABCD人35例題講解例2

如圖,在

ABCD中,DE⊥AB,BF⊥CD,垂足分別是E,F(xiàn).求證:AE=CF.證明:∵四邊形ABCD是平行四邊形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF(AAS),∴AE=CF.DABCFE人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學例題講解例2如圖,在ABCD中,DE⊥AB,BF36獲取新知知識點三:平行線間的距離點與點之間的距離:兩點之間線段的長度;直線外一點到直線的距離:該點向直線作垂線段的長度人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學獲取新知知識點三:平行線間的距離點與點之間的距離:兩點之間線37如圖,a//b,c//d,c,d與a,b分別相交于A,B,C,D四點.由平行四邊形的概念和性質可知,四邊形ABDC是平行四邊形,AB=CD.也就是說,兩條平行線之間的任何兩條平行線段都相等.人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學如圖,a//b,c//d,c,d與a,b分別相交于A38兩條平行線間的距離:

兩條平行線中,一條直線上任意一點到另一條直線的距離本質:點到直線的距離兩條平行線間的距離的性質:兩條平行線間的距離處處相等BFEAnmCD∵m//n,AB、CD、EF垂直于n,交n于B、D、F,交

m于A、C、E.∴AB=CD=EF人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學兩條平行線間的距離:兩條平行線間的距離的性質:BFEAnmC39隨堂演練1.如圖,?ABCD中,EF∥GH∥BC,MN∥AB,則圖中平行四邊形的個數(shù)是(

)A.13B.14C.15D.18D人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學隨堂演練1.如圖,?ABCD中,EF∥GH∥BC,MN∥A403.在?ABCD中,AD=3

cm,AB=2

cm,則?ABCD的周長是 (

)A.10

cm

B.6

cmC.5

cm

D.4

cmA人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學3.在?ABCD中,AD=3cm,AB=2cm,則?AB414.如圖,在?ABCD中,M是BC延長線上的一點,若∠A=135°,則∠MCD的度數(shù)是(

)A.45°B.55°C.65°D.75°A人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學人教版八年級數(shù)學下冊:平行四邊形的邊角性質ppt演講教學4.如圖,在?ABCD中,M是BC延長線上的一點,A人教版425.如圖,在□ABCD中.若∠A+∠C=200°,則∠A=_____,∠B=______.6.如圖,直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論