




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.72.已知數列為等差數列,且,則的值為()A. B. C. D.3.三棱柱中,底面邊長和側棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.4.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.5.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數超過102C.四個月的數據顯示北京市的居民消費價格指數增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數的增長呈上升趨勢6.已知,則的大小關系為()A. B. C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.638.若函數f(x)=a|2x-4|(a>0,a≠1)滿足f(1)=,則f(x)的單調遞減區(qū)間是()A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]9.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.10.已知函數,若,則的取值范圍是()A. B. C. D.11.設函數若關于的方程有四個實數解,其中,則的取值范圍是()A. B. C. D.12.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數在定義域R上的導函數為,若函數沒有零點,且,當在上與在R上的單調性相同時,則實數k的取值范圍是______.14.已知,則________.(填“>”或“=”或“<”).15.如圖所示,在直角梯形中,,、分別是、上的點,,且(如圖①).將四邊形沿折起,連接、、(如圖②).在折起的過程中,則下列表述:①平面;②四點、、、可能共面;③若,則平面平面;④平面與平面可能垂直.其中正確的是__________.16.二項式的展開式中項的系數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若,求函數的值域;(2)設為的三個內角,若,求的值;18.(12分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.19.(12分)已知數列滿足,等差數列滿足,(1)分別求出,的通項公式;(2)設數列的前n項和為,數列的前n項和為證明:.20.(12分)已知函數.(1)當(為自然對數的底數)時,求函數的極值;(2)為的導函數,當,時,求證:.21.(12分)的內角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.22.(10分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.2.B【解析】
由等差數列的性質和已知可得,即可得到,代入由誘導公式計算可得.【詳解】解:由等差數列的性質可得,解得,,故選:B.【點睛】本題考查等差數列的下標和公式的應用,涉及三角函數求值,屬于基礎題.3.B【解析】
設,,,根據向量線性運算法則可表示出和;分別求解出和,,根據向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項:【點睛】本題考查異面直線所成角的求解,關鍵是能夠通過向量的線性運算、數量積運算將問題轉化為向量夾角的求解問題.4.D【解析】
由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【點睛】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.5.D【解析】
采用逐一驗證法,根據圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.6.A【解析】
根據指數函數的單調性,可得,再利用對數函數的單調性,將與對比,即可求出結論.【詳解】由題知,,則.故選:A.【點睛】本題考查利用函數性質比較大小,注意與特殊數的對比,屬于基礎題..7.B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.8.B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上單調遞減,在[2,+∞)上單調遞增,所以f(x)在(-∞,2]上單調遞增,在[2,+∞)上單調遞減,故選B.9.C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.【點睛】本題考查直線與圓錐曲線中參數的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.10.B【解析】
對分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數,由得或解得.故選:B.【點睛】本題考查利用分段函數性質解不等式,屬于基礎題.11.B【解析】
畫出函數圖像,根據圖像知:,,,計算得到答案.【詳解】,畫出函數圖像,如圖所示:根據圖像知:,,故,且.故.故選:.【點睛】本題考查了函數零點問題,意在考查學生的計算能力和應用能力,畫出圖像是解題的關鍵.12.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運算求解能力,求解時注意球心的確定.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可知:為上的單調函數,則為定值,由指數函數的性質可知為上的增函數,則在,單調遞增,求導,則恒成立,則,根據函數的正弦函數的性質即可求得的取值范圍.【詳解】若方程無解,則或恒成立,所以為上的單調函數,都有,則為定值,設,則,易知為上的增函數,,,又與的單調性相同,在上單調遞增,則當,,恒成立,當,時,,,,,,此時,故答案為:【點睛】本題考查導數的綜合應用,考查利用導數求函數的單調性,正弦函數的性質,輔助角公式,考查計算能力,屬于中檔題.14.【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數式比較大小,涉及到換底公式的應用,考查學生的數學運算能力,是一道中檔題.15.①③【解析】
連接、交于點,取的中點,證明四邊形為平行四邊形,可判斷命題①的正誤;利用線面平行的性質定理和空間平行線的傳遞性可判斷命題②的正誤;連接,證明出,結合線面垂直和面面垂直的判定定理可判斷命題③的正誤;假設平面與平面垂直,利用面面垂直的性質定理可判斷命題④的正誤.綜合可得出結論.【詳解】對于命題①,連接、交于點,取的中點、,連接、,如下圖所示:則且,四邊形是矩形,且,為的中點,為的中點,且,且,四邊形為平行四邊形,,即,平面,平面,平面,命題①正確;對于命題②,,平面,平面,平面,若四點、、、共面,則這四點可確定平面,則,平面平面,由線面平行的性質定理可得,則,但四邊形為梯形且、為兩腰,與相交,矛盾.所以,命題②錯誤;對于命題③,連接、,設,則,在中,,,則為等腰直角三角形,且,,,且,由余弦定理得,,,又,,平面,平面,,,、為平面內的兩條相交直線,所以,平面,平面,平面平面,命題③正確;對于命題④,假設平面與平面垂直,過點在平面內作,平面平面,平面平面,,平面,平面,平面,,,,,,,又,平面,平面,.,平面,平面,.,,顯然與不垂直,命題④錯誤.故答案為:①③.【點睛】本題考查立體幾何綜合問題,涉及線面平行、面面垂直的證明、以及點共面的判斷,考查推理能力,屬于中等題.16.15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據正弦函數的性質求解,(2)根據,得,又為的內角,得到,再根據,利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數的性質,還考查了運算求解的能力,屬于中檔題,18.(1)(2)【解析】
(1)由,分別求得,得到答案;(2)利用正弦定理得到,利用余弦定理解出.【詳解】(1)因為角為鈍角,,所以,又,所以,且,所以.(2)因為,且,所以,又,則,所以.19.(1)(2)證明見解析【解析】
(1)因為,所以,所以,即,又因為,所以數列為等差數列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數列的前n項和為,則兩式相減得,所以,設則,所以.20.(1)極大值,極小值;(2)詳見解析.【解析】
首先確定函數的定義域和;(1)當時,根據的正負可確定單調性,進而確定極值點,代入可求得極值;(2)通過分析法可將問題轉化為證明,設,令,利用導數可證得,進而得到結論.【詳解】由題意得:定義域為,,(1)當時,,當和時,;當時,,在,上單調遞增,在上單調遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設,令,則,在上單調遞增,,則由,從而有:.【點睛】本題考查導數在研究函數中的應用,涉及到函數極值的求解、利用導數證明不等式的問題;本題不等式證明的關鍵是能夠將多個變量的問題轉化為一個變量的問題,通過構造函數的方式將問題轉化為函數最值的求解問題.21.(1);(2)【解析】
(1)根據三角形面積公式及平面向量數量積定義代入公式,即可求得,進而求得的值;(2)根據正弦定理將邊化為角,結合(1)中的值,即可將表達式化為的三角函數式;結合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.【點睛】本題考查了正弦定理在解三角形中的應用,三角形面積公式的應用,平面向量數量積的運算,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論