江蘇省昆山、太倉市2022-2023學年數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第1頁
江蘇省昆山、太倉市2022-2023學年數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第2頁
江蘇省昆山、太倉市2022-2023學年數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第3頁
江蘇省昆山、太倉市2022-2023學年數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第4頁
江蘇省昆山、太倉市2022-2023學年數(shù)學九年級第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,AB是⊙O的直徑,弦CD⊥AB于點E,若AB=8,AE=1,則弦CD的長是()A. B.2 C.6 D.82.如圖,已知AB是△ABC外接圓的直徑,∠A=35°,則∠B的度數(shù)是()A.35° B.45° C.55° D.65°3.擲一枚質地均勻的硬幣6次,下列說法正確的是()A.必有3次正面朝上 B.可能有3次正面朝上C.至少有1次正面朝上 D.不可能有6次正面朝上4.如圖,△ABC中,D是AB的中點,DE∥BC,連結BE,若S△DEB=1,則S△BCE的值為()A.1 B.2 C.3 D.45.如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④當x>1時,y隨x的增大而增大,正確的是()A.①③ B.②④ C.①②④ D.②③④6.下列一元二次方程有兩個相等實數(shù)根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=07.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.8.已知三角形的周長為12,面積為6,則該三角形內切圓的半徑為()A.4 B.3 C.2 D.19.下列方程屬于一元二次方程的是()A. B.C. D.10.如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點A、C、E、B、D、F,若AC=8,CE=12,BD=6,則BF的值是()A.14 B.15 C.16 D.1711.如圖,傳送帶和地面成一斜坡,它把物體從地面送到離地面5米高的地方,物體所經(jīng)過路程是13米,那么斜坡的坡度為()A.1:2.6 B.1: C.1:2.4 D.1:12.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.二、填空題(每題4分,共24分)13.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.14.若點A(1,y1)和點B(2,y2)在反比例函數(shù)y=﹣的圖象上,則y1與y2的大小關系是_____.15.如圖,在矩形中,是上的點,點在上,要使與相似,需添加的一個條件是_______(填一個即可).16.已知P(﹣1,y1),Q(﹣1,y1)分別是反比例函數(shù)y=﹣圖象上的兩點,則y1_____y1.(用“>”,“<”或“=”填空)17.一元二次方程5x2﹣1=4x的一次項系數(shù)是______.18.已知關于x的一元二次方程x2+px-3=0的一個根為-3,則它的另一根為________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-3,1),B(-1,3),C(0,1).(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后的△A1B1C1,并寫出A1,B1的坐標;(2)平移△ABC,若點A的對應點A2的坐標為(-5,-3),畫出平移后的△A2B2C2,并寫出B2,C2的坐標;(3)若△A2B2C2和△A1B1C1關于點P中心對稱,請直接寫出對稱中心P的坐標.20.(8分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內心與外心之間的距離為.21.(8分)如圖,AB為⊙O的直徑,點C為⊙O上一點,CH⊥AB于H,∠CAB=30°.(1)如圖1,求證:AH=3BH.(2)如圖2,點D為AB下方⊙O上一點,點E為AD上一點,若∠BOE=∠CAD,連接BD,求證:OE=BD.(3)如圖3,在(2)的條件下,連接CE,若CE⊥AD,OA=14,求BD的長.22.(10分)已知反比例函數(shù),(k為常數(shù),).(1)若點在這個函數(shù)的圖象上,求k的值;(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍.23.(10分)如圖,中,,是斜邊上一個動點,以為直徑作交于點,與的另一個交點,連接.(1)當時,①若,求的度數(shù);②求證;(2)當,時,是否存在點,使得是等腰三角形,若存在,求出所有符合條件的的長.24.(10分)在平面直角坐標系xOy中,拋物線與y軸交于點A.(1)直接寫出點A的坐標;(2)點A、B關于對稱軸對稱,求點B的坐標;(3)已知點,.若拋物線與線段PQ恰有兩個公共點,結合函數(shù)圖象,求a的取值范圍.25.(12分)如圖,點B、C、D都在⊙O上,過點C作AC∥BD交OB延長線于點A,連接CD,且∠CDB=∠OBD=30°,DB=cm.(1)求證:AC是⊙O的切線;(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積.(結果保留π)26.如圖,以等腰△ABC的一腰AC為直徑作⊙O,交底邊BC于點D,過點D作腰AB的垂線,垂足為E,交AC的延長線于點F.(1)求證:EF是⊙O的切線;(2)證明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面積.

參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)垂徑定理,構造直角三角形,連接OC,在RT△OCE中應用勾股定理即可.【詳解】試題解析:由題意連接OC,得OE=OB-AE=4-1=3,CE=CD==,CD=2CE=2,故選B.2、C【解析】試題分析:由AB是△ABC外接圓的直徑,根據(jù)直徑所對的圓周角是直角,可求得∠C=90°,又由直角三角形兩銳角互余的關系即可求得∠B的度數(shù):∵AB是△ABC外接圓的直徑,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故選C.考點:1.圓周角定理;2.直角三角形兩銳角的關系.3、B【分析】根據(jù)隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,可得答案.【詳解】解:擲硬幣問題,正、反面朝上的次數(shù)屬于隨機事件,不是確定事件,故A,C,D錯誤.

故選:B.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、B【解析】根據(jù)三角形中位線定理和三角形的面積即可得到結論.【詳解】∵D是AB的中點,DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故選:B.【點睛】本題考查了三角形中位線定理,熟練掌握并運用三角形中位線定理是解題的關鍵.5、D【分析】①依據(jù)拋物線開口方向可確定a的符號、與y軸交點確定c的符號進而確定ac的符號;②由拋物線與x軸交點的坐標可得出一元二次方程ax2+bx+c=0的根;③由當x=1時y<0,可得出a+b+c<0;④觀察函數(shù)圖象并計算出對稱軸的位置,即可得出當x>1時,y隨x的增大而增大.【詳解】①由圖可知:,,,故①錯誤;②由拋物線與軸的交點的橫坐標為與,方程的根是,,故②正確;③由圖可知:時,,,故③正確;④由圖象可知:對稱軸為:,時,隨著的增大而增大,故④正確;故選D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系、拋物線與x軸的交點以及二次函數(shù)的性質,觀察函數(shù)圖象,逐一分析四條說法的正誤是解題的關鍵.6、A【分析】根據(jù)一元二次方程根的判別式以及一元二次方程的解法,逐一判斷選項,即可.【詳解】A.x2=0,解得:x1=x2=0,故本選項符合題意;B.x2=4,解得:x1=2,x2=-2,故本選項不符合題意;C.x2﹣2x﹣1=0,,有兩個不相等的根,故不符合題意;D.x2+1=0,方程無解,故不符合題意.故選A.【點睛】本題主要考查一元二次方程根的判別式,熟練掌握一元二次方程根的判別式的意義,是解題的關鍵.7、D【分析】根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、D【分析】設內切圓的半徑為r,根據(jù)公式:,列出方程即可求出該三角形內切圓的半徑.【詳解】解:設內切圓的半徑為r解得:r=1故選D.【點睛】此題考查的是根據(jù)三角形的周長和面積,求內切圓的半徑,掌握公式:是解決此題的關鍵.9、A【解析】本題根據(jù)一元二次方程的定義求解.一元二次方程必須滿足兩個條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項系數(shù)不為1.【詳解】解:A、該方程符合一元二次方程的定義,符合題意;B、該方程屬于二元二次方程,不符合題意;C、當a=1時,該方程不是一元二次方程,不符合題意;D、該方程不是整式方程,不是一元二次方程,不符合題意.故選:A.【點睛】本題利用了一元二次方程的概念.只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特別要注意a≠1的條件.這是在做題過程中容易忽視的知識點.10、B【分析】三條平行線截兩條直線,所得的對應線段成比例.直接根據(jù)平行線分線段成比例定理即可得出結論.【詳解】解:∵a∥b∥c,AC=8,CE=12,BD=6,

∴,即,解得:,故選:B.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應線段成比例是解答此題的關鍵.11、C【解析】根據(jù)題意作出合適的輔助線,由坡度的定義可知,坡度等于坡角對邊與鄰邊的比值,根據(jù)題目中的數(shù)據(jù)可以得到坡度,本題得以解決.【詳解】如圖據(jù)題意得;AB=13、AC=5,則BC=,∴斜坡的坡度i=tan∠ABC==1∶2.4,故選C.12、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.二、填空題(每題4分,共24分)13、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數(shù),其中兩枚硬幣全部正面向上的結果數(shù)為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.14、y1<y1【分析】由k=-1可知,反比例函數(shù)y=﹣的圖象在每個象限內,y隨x的增大而增大,則問題可解.【詳解】解:∵反比例函數(shù)y=﹣中,k=﹣1<0,∴此函數(shù)在每個象限內,y隨x的增大而增大,∵點A(1,y1),B(1,y1)在反比例函數(shù)y=﹣的圖象上,1>1,∴y1<y1,故答案為y1<y1.【點睛】本題考查了反比例函數(shù)的增減性,解答關鍵是注意根據(jù)比例系數(shù)k的符號確定,在各個象限內函數(shù)的增減性解決問題.15、或∠BAE=∠CEF,或∠AEB=∠EFC(任填一個即可)【分析】根據(jù)相似三角形的判定解答即可.【詳解】∵矩形ABCD,∴∠ABE=∠ECF=90,∴添加∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF,∴△ABE∽△ECF,故答案為:∠BAE=∠CEF,或∠AEB=∠EFC,或AE⊥EF.【點睛】此題考查相似三角形的判定,關鍵是根據(jù)相似三角形的判定方法解答.16、<【分析】先根據(jù)反比例函數(shù)中k=﹣3<0判斷出函數(shù)圖象所在的象限及增減性,再根據(jù)各點橫坐標的特點即可得出結論.【詳解】∵比例函數(shù)y=﹣中,k<0,∴此函數(shù)圖象在二、四象限,∵﹣1<﹣1<0,∴P(﹣1,y1),Q(﹣1,y1)在第二象限,∵函數(shù)圖象在第二象限內,y隨x的增大而增大,∴y1<y1.故答案為:<.【點睛】本題考查的是反比例函數(shù)的性質,熟知反比例函數(shù)的性質,掌握其函數(shù)增減性是關鍵.17、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0).在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.【詳解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,則一次項系數(shù)是﹣4,故答案為:﹣4【點睛】本題考查了一元二次方程的一般形式,解答本題要通過移項,轉化為一般形式,注意移項時符號的變化.18、1【分析】根據(jù)根與系數(shù)的關系得出?3x=?6,求出即可.【詳解】設方程的另一個根為x,則根據(jù)根與系數(shù)的關系得:?3x=?3,解得:x=1,故答案為:1.【點睛】本題考查了根與系數(shù)的關系和一元二次方程的解,能熟記根與系數(shù)的關系的內容是解此題的關鍵.三、解答題(共78分)19、(1)見解析,A1(3,1),B1(1,-1).(2)見解析,B2(-3,-1),C2(-2,-3).(3)(-1,-1)【分析】(1)依據(jù)以點C為旋轉中心旋轉180°,即可畫出旋轉后的△A1B1C1;

(2)依據(jù)點A的對應點A2的坐標為(?5,?3),即可畫出平移后的△A2B2C2;

(3)依據(jù)中心對稱的性質,即可得到對稱中心P的坐標.【詳解】(1)如圖所示,△A1B1C1為所作三角形,A1(3,1),B1(1,-1).(2)如圖所示,△A2B2C2為所作三角形,B2(-3,-1),C2(-2,-3).(3)對稱中心P的坐標為(-1,-1).【點睛】本題主要考查了利用平移變換以及旋轉變換進行作圖,根據(jù)旋轉的性質可知,對應角都相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形.20、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內切圓,M為圓心,N為切點,由切線長定理可得,所以ON=5-4=1由面積法易得內切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內切圓,M為圓心,N為切點,由切線長定理可得,所以ON=5-4=1由面積法易得內切圓半徑為2∴,故答案:(1)(2)AB+BC=2BE(3)【點睛】本題主要考查角平分線、三角形全等及三角形內心與外心的綜合,難度較大,需靈活運用各知識求解.21、(1)證明見解析;(2)證明見解析;(3)BD=2.【分析】(1)連接BC,根據(jù)直角三角形中,30度所對的直角邊是斜邊的一半,可得:AB=2BC,BC=2BH,可得結論;(2)由(1)得AB=2BC,AB=2OA,得OA=BC,利用ASA證明△OAE≌△BCD,可得結論;(3)過O作OM⊥AD于M,先證明∠OEA=∠BAC=30°,設OM=x,則ME=x,由△OAE≌△BCD,則∠DCE=30°,設AM=MD=y(tǒng),則AE=y(tǒng)+x,DE=y(tǒng)﹣x,根據(jù)AE=2DE列等式得:y=3x,根據(jù)勾股定理列方程可得x的值,可得:BD=2OM=2.【詳解】(1)證明:如圖1,連接BC,∵AB是⊙O的直徑,∴∠ACB=90°,∵∠CAB=30°,∴∠ABC=60°,AB=2BC,∵CH⊥AB,∴∠BCH=30°,∴BC=2BH,∴AB=4BH,∴AH=3BH,(2)證明:連接BC、DC,∵∠CAD+∠CBD=180°,∠BOE=∠CAD,∴∠BOE+∠CBD=180°,∵∠BOE+∠AOE=180°,∴∠AOE=∠CBD,∵∠OAE,∠BCD是弧BD所對的圓周角∴∠OAE=∠BCD,由(1)得AB=2BC,AB=2OA,∴OA=BC,∴△OAE≌△BCD,∴OE=BD;(3)解:過O作OM⊥AD于M,∴AM=MD,∵AO=OB,∴BD=2OM,∵∠BOE=∠CAD,∠BOE=∠BAE+∠OEA,∠CAD=∠BAE+∠BAC,∴∠OEA=∠BAC=30°,設OM=x,則ME=x,由(2)得:△OAE≌△BCD,∴AE=CD,∵∠ADC,∠ABC是弧AC所對的圓周角,∴∠ADC=∠ABC=60°,∵CE⊥AD,∴∠DCE=30°,∴CD=2DE,AE=CD,∴AE=2DE,設AM=MD=y(tǒng),則AE=y(tǒng)+x,DE=y(tǒng)﹣x,∴y+x=2(y﹣x),y=3x,在Rt△OAM中,OA=14,AM=3x,OM=x,OM2+AM2=OA2,,解得:x1=,x2=﹣(舍),∴OM=,∴BD=2OM=2.【點睛】本題主要考查圓的性質和三角形的性質的綜合問題,添加合適的輔助線,綜合應用直角三角形的性質和圓周角定理,垂徑定理和圓內接四邊形的性質,是解題的關鍵.22、(1)k=9;(2)k<3【分析】(1)根據(jù)反比例函數(shù)圖象上點的坐標特征得到k-3=2×3,然后解方程即可;

(2)根據(jù)反比例函數(shù)的性質得,然后解不等式即可;【詳解】解:(1)∵點在這個函數(shù)的圖象上,,解得;(2)∵在函數(shù)圖象的每一支上,隨的增大而增大,,得.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.也考查了反比例函數(shù)的性質.23、(1)①40°;②證明見解析;(2)存在,的長為10或或1【分析】(1)①連接,由圓周角定理得出,求出,,則,即可得出結果;②由,得出,易證,由,,得出,即可得出結論;(2)由勾股定理得,由面積公式得出,求出,連接,則,得出,求出,是等腰三角形,分三種情況討論,當時,,,;當時,可知點是斜邊的中線,得出,;當時,作,則是中點,,求出,,,由,得出,求出,,,則.【詳解】(1)①解:連接,如圖1所示:是直徑,,,,,,,;②證明:,,,,,,,,;(2)解:由,,由勾股定理得:,,即,連接,如圖所示:是直徑,,,,,,,是等腰三角形,分三種情況:當時,,,;當時,可知點是斜邊的中線,,;當時,作,則是中點,,如圖所示:,,,,,即,解得:,,,;綜上所述,是等腰三角形,符合條件的的長為10或或1.【點睛】本題是圓的綜合題目,考查了圓周角定理、勾股定理、等腰三角形的判定與性質、三角形中位線定理、相似三角形的判定與性質,熟練運用圓的基本性質定理是解題的關鍵.24、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)題干要求直接寫出點A的坐標,將x=0代入即可求出;(2)由題意知點A、B關于對稱軸對稱,求出對稱軸從而即可求點B的坐標;(3)結合函數(shù)圖象,拋物線與線段PQ恰有兩個公共點,分別對有兩個公共點的情況進行討論求解.【詳解】解:(1)由題意拋物線與y軸交于點A,將x=0代入求出坐標為;(2)∵;∴.(3)當拋物線過點P(4,0)時,,∴.此時,拋物線與線段PQ有兩個公共點.當拋物線過點時,a=1,此時,拋物線與線段PQ有兩個公共點.∵拋物線與線段PQ恰有兩個公共點,∴.當拋物線開口向下時,.綜上所述,當或時,拋物線與線段PQ恰有兩個公共點.【點睛】本題考查二次函數(shù)圖像相關性質,熟練掌握二次函數(shù)圖像相關性質是解題的關鍵.25、(3)證明見解析;(3)2πcm3.【分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論