2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年安徽省宿州市成考專升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)f(x)為連續(xù)函數(shù),則()'等于().A.A.f(t)B.f(t)-f(a)C.f(x)D.f(x)-f(a)

2.

3.

4.函數(shù)y=f(x)在(a,b)內(nèi)二階可導(dǎo),且f'(x)>0,f"(x)<0,則曲線y=f(x)在(a,b)內(nèi)().

A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸

5.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

6.設(shè)函數(shù)f(x)在區(qū)間(0,1)內(nèi)可導(dǎo),f'(x)>0,則在(0,1)內(nèi)f(x)().A.單調(diào)增加B.單調(diào)減少C.為常量D.既非單調(diào),也非常量

7.

8.二次積分等于()A.A.

B.

C.

D.

9.A.A.4πB.3πC.2πD.π

10.A.A.

B.

C.

D.

11.

A.2x-2B.2y+4C.2x+2y+2D.2y+4+x2-2x

12.A.0

B.1

C.e

D.e2

13.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。

A.ln2

B.ln1

C.lne

D.

14.A.A.為所給方程的解,但不是通解

B.為所給方程的解,但不-定是通解

C.為所給方程的通解

D.不為所給方程的解

15.微分方程y'+x=0的通解()。A.

B.

C.

D.

16.A.A.3yx3y-1

B.yx3y-1

C.x3ylnx

D.3x3ylnx

17.

18.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-1

19.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點(diǎn)B.x=0是f(x)的極大值點(diǎn)C.x=0是f(x)的極小值點(diǎn)D.x=0是f(x)的拐點(diǎn)

20.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

21.()。A.3B.2C.1D.0

22.

23.A.A.

B.

C.

D.

24.

25.

26.

27.

28.A.A.0B.1/2C.1D.2

29.下列命題中正確的有().

30.A.A.0B.1C.2D.不存在31.()A.A.sinx+C

B.cosx+C

C.-sinx+C

D.-cosx+C

32.A.A.

B.

C.

D.

33.設(shè)Y=e-5x,則dy=().

A.-5e-5xdx

B.-e-5xdx

C.e-5xdx

D.5e-5xdx

34.

35.

36.()。A.2πB.πC.π/2D.π/437.A.A.

B.

C.

D.

38.

39.

40.

41.

42.

43.

44.

45.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

46.

47.

48.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小49.A.

B.

C.

D.

50.

二、填空題(20題)51.

52.微分方程y=x的通解為_(kāi)_______。53.廣義積分.54.

55.56.

57.

58.函數(shù)f(x)=x3-12x的極小值點(diǎn)x=_______.

59.

60.

61.

62.

63.將積分改變積分順序,則I=______.

64.設(shè),且k為常數(shù),則k=______.

65.66.設(shè)函數(shù)y=x2+sinx,則dy______.67.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。

68.

69.

70.

三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.求曲線在點(diǎn)(1,3)處的切線方程.

76.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

77.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).78.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

79.

80.

81.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.84.

85.求微分方程y"-4y'+4y=e-2x的通解.

86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).87.求微分方程的通解.88.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

89.

90.證明:四、解答題(10題)91.

92.(本題滿分8分)

93.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.

94.計(jì)算

95.

96.97.98.

99.

100.五、高等數(shù)學(xué)(0題)101.已知∫f(ex)dx=e2x,則f(x)=________。

六、解答題(0題)102.

參考答案

1.C本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo)性質(zhì).

這是一個(gè)基本性質(zhì):若f(x)為連續(xù)函數(shù),則必定可導(dǎo),且

本題常見(jiàn)的錯(cuò)誤是選D,這是由于考生將積分的性質(zhì)與牛頓-萊布尼茨公式混在了一起而引起的錯(cuò)誤.

2.B解析:

3.D

4.B解析:本題考查的知識(shí)點(diǎn)為利用一階導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

由于在(a,b)內(nèi)f'(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,又由于f"(x)<0,可知曲線y=f(x)在(a,b)內(nèi)為凹,可知應(yīng)選B.

5.D

6.A由于f(x)在(0,1)內(nèi)有f'(x)>0,可知f(x)在(0,1)內(nèi)單調(diào)增加,故應(yīng)選A.

7.C

8.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

9.A

10.A

11.B解析:

12.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

13.D由拉格朗日定理

14.B本題考查的知識(shí)點(diǎn)為線性常系數(shù)微分方程解的結(jié)構(gòu).

15.D所給方程為可分離變量方程.

16.D

17.A解析:

18.C

19.A∵分母極限為0,分子極限也為0;(否則極限不存在)用羅必達(dá)法則同理即f"(0)一1≠0;x=0不是駐點(diǎn)∵可導(dǎo)函數(shù)的極值點(diǎn)必是駐點(diǎn)∴選A。

20.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過(guò)來(lái)卻不行,如函數(shù)f(x)=故選A。

21.A

22.A解析:

23.A

24.D

25.C

26.C

27.C

28.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

29.B解析:

30.C本題考查的知識(shí)點(diǎn)為左極限、右極限與極限的關(guān)系.

31.A

32.D

33.A

【評(píng)析】基本初等函數(shù)的求導(dǎo)公式與導(dǎo)數(shù)的四則運(yùn)算法則是常見(jiàn)的試題,一定要熟記基本初等函數(shù)求導(dǎo)公式.對(duì)簡(jiǎn)單的復(fù)合函數(shù)的求導(dǎo),應(yīng)該注意由外到里,每次求一個(gè)層次的導(dǎo)數(shù),不要丟掉任何一個(gè)復(fù)合層次.

34.D

35.C

36.B

37.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。

38.C解析:

39.C解析:

40.D

41.A

42.D

43.B

44.A

45.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

46.C解析:

47.B

48.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

49.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。

50.A

51.2x-4y+8z-7=052.本題考查可分離變量的微分方程.分離變量得dy=xdx,兩端分別積分,∫dy=∫xdx,53.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

54.本題考查了改變積分順序的知識(shí)點(diǎn)。

55.1+2ln2

56.

57.1

58.22本題考查了函數(shù)的極值的知識(shí)點(diǎn)。f'(x)=3x2-12=3(x-2)(x+2),當(dāng)x=2或x=-2時(shí),f'(x)=0,當(dāng)x<-2時(shí),f'(x)>0;當(dāng)-2<x<2時(shí),f'(x)<0;當(dāng)x>2時(shí),f’(x)>0,因此x=2是極小值點(diǎn),

59.x=-2x=-2解析:

60.

61.11解析:

62.

解析:

63.

64.本題考查的知識(shí)點(diǎn)為廣義積分的計(jì)算.

65.4π66.(2x+cosx)dx;本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

解法1利用dy=y'dx.由于y'=(x2+sinx)'=2x+cosx,

可知dy=(2x+cosx)dx.

解法2利用微分運(yùn)算法則dy=d(x2+sinx)=dx2+dsinx=(2x+cosx)dx.67.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

68.

69.

70.

71.由等價(jià)無(wú)窮小量的定義可知

72.

73.函數(shù)的定義域?yàn)?/p>

注意

74.

75.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

76.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

77.

78.

79.

80.

81.82.由二重積分物理意義知

83.

84.由一階線性微分方程通解公式有

85.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

86.

列表:

說(shuō)明

87.

88.

89.

90.

91.92.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.

比較典型的錯(cuò)誤是利用換元計(jì)算時(shí),一些考生忘記將積分

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論