2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年廣東省韶關(guān)市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)y=3-x,則y'=()。A.-3-xln3

B.3-xlnx

C.-3-x-1

D.3-x-1

2.A.1

B.0

C.2

D.

3.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

4.等于().A.A.0

B.

C.

D.∞

5.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點(diǎn)且平行于x軸B.不過原點(diǎn)但平行于x軸C.過原點(diǎn)且垂直于x軸D.不過原點(diǎn)但垂直于x軸

6.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

7.A.A.4πB.3πC.2πD.π

8.

9.

10.A.A.

B.

C.

D.

11.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

12.二次積分等于()A.A.

B.

C.

D.

13.()。A.e-6

B.e-2

C.e3

D.e6

14.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

15.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e

16.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

17.

18.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx

B.cosxdX

C.-cos(x-2)dx

D.cos(x-2)dx

19.單位長(zhǎng)度扭轉(zhuǎn)角θ與下列哪項(xiàng)無(wú)關(guān)()。

A.桿的長(zhǎng)度B.扭矩C.材料性質(zhì)D.截面幾何性質(zhì)

20.

21.

22.控制工作的實(shí)質(zhì)是()

A.糾正偏差B.衡量成效C.信息反饋D.擬定標(biāo)準(zhǔn)

23.

24.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

25.A.沒有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線

26.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

27.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

28.

29.

30.A.

B.0

C.ln2

D.-ln2

31.設(shè)函數(shù)f(x)=2lnx+ex,則f(2)等于()。

A.eB.1C.1+e2

D.ln2

32.

33.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

34.A.2/5B.0C.-2/5D.1/2

35.

36.

37.

38.

39.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是

A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)40.A.1/x2

B.1/x

C.e-x

D.1/(1+x)2

41.A.A.1B.2C.3D.4

42.

A.-1/2

B.0

C.1/2

D.1

43.下列命題正確的是()A.A.

B.

C.

D.

44.點(diǎn)(-1,-2,-5)關(guān)于yOz平面的對(duì)稱點(diǎn)是()

A.(-1,2,-5)B.(-1,2,5)C.(1,2,5)D.(1,-2,-5)

45.

46.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

47.下列命題不正確的是()。

A.兩個(gè)無(wú)窮大量之和仍為無(wú)窮大量

B.上萬(wàn)個(gè)無(wú)窮小量之和仍為無(wú)窮小量

C.兩個(gè)無(wú)窮大量之積仍為無(wú)窮大量

D.兩個(gè)有界變量之和仍為有界變量

48.下列各式中正確的是()。

A.

B.

C.

D.

49.

50.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-1二、填空題(20題)51.設(shè)y=3x,則y"=_________。52.設(shè)y=ex/x,則dy=________。

53.54.

55.

56.

57.

58.

59.設(shè)f(x)在x=1處連續(xù),=2,則=________。60.已知平面π:2x+y-3z+2=0,則過點(diǎn)(0,0,0)且與π垂直的直線方程為______.

61.函數(shù)在x=0連續(xù),此時(shí)a=______.

62.

63.

64.

65.微分方程exy'=1的通解為______.

66.

67.68.69.

70.設(shè)函數(shù)z=x2ey,則全微分dz=______.

三、計(jì)算題(20題)71.72.73.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.74.證明:75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

76.求曲線在點(diǎn)(1,3)處的切線方程.77.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

78.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

79.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

80.求微分方程y"-4y'+4y=e-2x的通解.

81.

82.

83.將f(x)=e-2X展開為x的冪級(jí)數(shù).84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

86.

87.

88.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).89.90.求微分方程的通解.四、解答題(10題)91.

92.計(jì)算

93.

94.

95.

96.

97.98.設(shè)區(qū)域D為:99.

100.

五、高等數(shù)學(xué)(0題)101.曲線y=lnx在點(diǎn)_________處的切線平行于直線y=2x一3。

六、解答題(0題)102.

參考答案

1.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。

2.C

3.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

4.A

5.C將原點(diǎn)(0,0,0)代入直線方程成等式,可知直線過原點(diǎn)(或由直線方程x/m=y/n=z/p表示過原點(diǎn)的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且

(0,2,1)*(1,0,0)=0,

可知所給直線與x軸垂直,因此選C。

6.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.

7.A

8.A解析:

9.D解析:

10.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義.

11.D

12.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

13.A

14.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

15.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

16.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

17.A

18.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.

可知應(yīng)選D.

19.A

20.C解析:

21.D

22.A解析:控制工作的實(shí)質(zhì)是糾正偏差。

23.B

24.B

25.D

26.A

27.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

28.B

29.A

30.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此

故選A.

31.C

32.D

33.C

34.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

35.C

36.B

37.A

38.B

39.Dy=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增.

40.A本題考查了反常積分的斂散性的知識(shí)點(diǎn)。

41.A

42.B

43.D

44.D關(guān)于yOz平面對(duì)稱的兩點(diǎn)的橫坐標(biāo)互為相反數(shù),故選D。

45.C

46.C

47.A∵f(x)→∞;g(x)→∞∴f(x)+g(x)是不定型,不一定是無(wú)窮大。

48.B

49.A

50.C解析:51.3e3x

52.

53.

54.±1.

本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

55.2

56.

解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

57.2xy(x+y)+3

58.59.由連續(xù)函數(shù)的充要條件知f(x)在x0處連續(xù),則。

60.本題考查的知識(shí)點(diǎn)為直線的方程和平面與直線的關(guān)系.

由于直線與已知平面垂直,可知直線的方向向量s與平面的法向量n平行.可以取s=n=(2,1,-3),又已知直線過點(diǎn)(0,0,0),由直線的標(biāo)準(zhǔn)式方程可知

為所求.

61.062.本題考查的知識(shí)點(diǎn)為定積分的基本公式。

63.2

64.eyey

解析:65.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.

66.67.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.

通常求二元函數(shù)的全微分的思路為:

68.本題考查了交換積分次序的知識(shí)點(diǎn)。69.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問題.

通常求解的思路為:

70.dz=2xeydx+x2eydy

71.

72.

73.由二重積分物理意義知

74.

75.

76.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

77.由等價(jià)無(wú)窮小量的定義可知

78.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%79.函數(shù)的定義域?yàn)?/p>

注意

80.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

81.由一階線性微分方程通解公式有

82.

83.

84.

85.

86.

87.

88.

列表:

說(shuō)明

89.

90.

91.

92.本題考查的知識(shí)點(diǎn)為不定積分的換元積分運(yùn)算.

93.

94.

95.解

96.97.解如圖所示,將積分區(qū)域D視作y-型區(qū)域,即

98.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).

如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.

使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.

本題考生中常見的錯(cuò)誤為:

被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見的錯(cuò)誤,考生務(wù)必要注意.99.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價(jià)無(wú)窮小代換)本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求極限.

由于問題為“∞-∞”型極限問題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論