版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年浙江省紹興市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.
2.二元函數(shù)z=x3-y3+3x2+3y2-9x的極小值點(diǎn)為()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
3.
4.A.A.發(fā)散B.絕對(duì)收斂C.條件收斂D.收斂性與k有關(guān)5.
[]A.e-x+C
B.-e-x+C
C.ex+C
D.-ex+C
6.
7.
8.A.2B.1C.1/2D.-19.()。A.2πB.πC.π/2D.π/410.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
11.
12.函數(shù)y=ex+e-x的單調(diào)增加區(qū)間是
A.(-∞,+∞)B.(-∞,0]C.(-1,1)D.[0,+∞)
13.
14.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
15.
16.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直
17.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。
A.vC=2uB
B.uC=θBα
C.vC=uB+θBα
D.vC=vB
18.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.
B.
C.
D.
19.
20.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2
B.eC.1D.1/e
21.當(dāng)x→0時(shí),x2是x-ln(1+x)的().
A.較高階的無窮小B.等價(jià)無窮小C.同階但不等價(jià)無窮小D.較低階的無窮小22.設(shè)()A.1B.-1C.0D.2
23.A.e
B.
C.
D.
24.A.A.
B.
C.
D.
25.
26.下列命題中正確的有().A.A.
B.
C.
D.
27.A.A.2B.1C.0D.-1
28.
29.()A.A.1/2B.1C.2D.e
30.
31.下列說法中不能提高梁的抗彎剛度的是()。
A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)
32.
33.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx34.設(shè)y=exsinx,則y'''=A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
35.設(shè)y=sin2x,則y'等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x
36.“目標(biāo)的可接受性”可以用()來解釋。
A.公平理論B.雙因素理論C.期望理論D.強(qiáng)化理論
37.曲線y=x-3在點(diǎn)(1,1)處的切線斜率為()
A.-1B.-2C.-3D.-4
38.
39.設(shè)函數(shù)f(x)在(0,1)內(nèi)可導(dǎo),f'(x)>0,則f(x)在(0,1)內(nèi)A.A.單調(diào)減少B.單調(diào)增加C.為常量D.不為常量,也不單調(diào)40.()。A.e-2
B.e-2/3
C.e2/3
D.e2
41.()A.A.2xy+y2
B.x2+2xy
C.4xy
D.x2+y2
42.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx
43.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無最大值D.無最小值
44.
45.圖示為研磨細(xì)砂石所用球磨機(jī)的簡(jiǎn)化示意圖,圓筒繞0軸勻速轉(zhuǎn)動(dòng)時(shí),帶動(dòng)筒內(nèi)的許多鋼球一起運(yùn)動(dòng),當(dāng)鋼球轉(zhuǎn)動(dòng)到一定角度α=50。40時(shí),它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時(shí)圓筒的轉(zhuǎn)速為()。
A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min
46.
47.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)
48.
49.
50.方程x2+y2-z2=0表示的二次曲面是()。
A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面二、填空題(20題)51.
52.
53.
54.
55.
56.
57.58.設(shè)z=x3y2,則
59.
60.61.設(shè),則y'=________。
62.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為__________.
63.
64.
65.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。
66.
67.68.
69.
70.三、計(jì)算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
72.求微分方程y"-4y'+4y=e-2x的通解.
73.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
74.
75.
76.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.77.證明:78.求曲線在點(diǎn)(1,3)處的切線方程.79.
80.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
81.
82.將f(x)=e-2X展開為x的冪級(jí)數(shù).83.
84.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
85.86.87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則88.求微分方程的通解.89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.92.93.94.
95.
96.
97.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
98.
99.
100.設(shè)z=z(x,y)由方程ez-xy2+x+z=0確定,求dz.五、高等數(shù)學(xué)(0題)101.若f(x一1)=x2+3x+5,則f(x+1)=________。
六、解答題(0題)102.
參考答案
1.C
2.A對(duì)于點(diǎn)(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).對(duì)于點(diǎn)(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此點(diǎn)為極大值點(diǎn).對(duì)于點(diǎn)(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此點(diǎn)為極小值點(diǎn).對(duì)于點(diǎn)(1,2),A=12=0,C=-6,B2-AC=72>0,故此點(diǎn)為非極值點(diǎn).
3.D
4.C
5.B
6.D解析:
7.B
8.A本題考查了函數(shù)的導(dǎo)數(shù)的知識(shí)點(diǎn)。
9.B
10.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
11.A
12.D考查了函數(shù)的單調(diào)區(qū)間的知識(shí)點(diǎn).
y=ex+e-x,則y'=ex-e-x,當(dāng)x>0時(shí),y'>0,所以y在區(qū)間[0,+∞)上單調(diào)遞增。
13.D解析:
14.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
15.A
16.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.
由于平面π1,π2的法向量分別為
可知n1⊥n2,從而π1⊥π2.應(yīng)選C.
17.C
18.C
19.A
20.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).
由于y=lnx,可知可知應(yīng)選D.
21.C解析:本題考查的知識(shí)點(diǎn)為無窮小階的比較.
由于
可知當(dāng)x→0時(shí),x2與x-ln(1+x)為同階但不等價(jià)無窮?。蕬?yīng)選C.
22.A
23.C
24.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
25.A
26.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的性質(zhì).
可知應(yīng)選B.通??梢詫⑵渥鳛榕卸?jí)數(shù)發(fā)散的充分條件使用.
27.C
28.C
29.C
30.A解析:
31.A
32.B
33.D
34.C由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
35.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
Y=sin2x,
則y'=cos(2x)·(2x)'=2cos2x.
可知應(yīng)選D.
36.C解析:目標(biāo)的可接受性可用期望理論來理解。
37.C由導(dǎo)數(shù)的幾何意義知,若y=f(x)可導(dǎo),則曲線在點(diǎn)(x0,f(x0))處必定存在切線,且該切線的斜率為f"(x0)。由于y=x-3,y"=-3x-4,y"|x=1=-3,可知曲線y=x-3在點(diǎn)(1,1)處的切線斜率為-3,故選C。
38.D
39.B由于f'(x)>0,可知.f(x)在(0,1)內(nèi)單調(diào)增加。因此選B。
40.B
41.A
42.B
43.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
44.B解析:
45.C
46.C
47.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
48.C
49.A解析:
50.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.
51.52.本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由于z=x2+3xy+2y2-y,可得
53.
54.1/(1-x)2
55.-3e-3x-3e-3x
解析:
56.-157.158.12dx+4dy;本題考查的知識(shí)點(diǎn)為求函數(shù)在一點(diǎn)處的全微分.
由于z=x3y2可知,均為連續(xù)函數(shù),因此
59.0<k≤10<k≤1解析:
60.3/2本題考查了函數(shù)極限的四則運(yùn)算的知識(shí)點(diǎn)。
61.
62.63.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
64.(sinx+cosx)exdx(sinx+cosx)exdx解析:65.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
66.1/3
67.68.2.
本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.
69.π/2π/2解析:
70.
71.
列表:
說明
72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
73.
74.
75.
則
76.
77.
78.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
79.由一階線性微分方程通解公式有
80.函數(shù)的定義域?yàn)?/p>
注意
81.
82.
83.
84.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國消防救援學(xué)院《城市土地管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州體育職業(yè)學(xué)院《電動(dòng)汽車原理與設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長春人文學(xué)院《西方政治思想史汪聶才》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江工貿(mào)職業(yè)技術(shù)學(xué)院《C程序設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品衛(wèi)生檢測(cè)技術(shù)的發(fā)展
- 策劃感恩節(jié)新媒體活動(dòng)模板
- 清明文化在媒體傳播中的挖掘模板
- 元旦跨年夜祝福語
- 統(tǒng)編版五年級(jí)語文上冊(cè)寒假作業(yè)(一)(有答案)
- 徐州幼兒師范高等??茖W(xué)?!秳?chuàng)業(yè)基礎(chǔ)實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年浙江杭州師范大學(xué)附屬醫(yī)院招聘筆試真題
- 學(xué)校自習(xí)室管理及收費(fèi)方案
- 2025年護(hù)理部護(hù)士理論培訓(xùn)計(jì)劃
- 環(huán)保管家管家式管家式一站式服務(wù)合同
- 醫(yī)療廢物污水培訓(xùn)
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 《用銳角三角函數(shù)解決問題(3)》參考課件
- 房地產(chǎn)營銷策劃 -佛山龍灣壹號(hào)學(xué)區(qū)房項(xiàng)目推廣策略提案方案
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風(fēng)水學(xué)的基礎(chǔ)知識(shí)培訓(xùn)
-
評(píng)論
0/150
提交評(píng)論