《塑性加工模擬及自動控制》課件:鄭江-esson 2-Continuous Media_第1頁
《塑性加工模擬及自動控制》課件:鄭江-esson 2-Continuous Media_第2頁
《塑性加工模擬及自動控制》課件:鄭江-esson 2-Continuous Media_第3頁
《塑性加工模擬及自動控制》課件:鄭江-esson 2-Continuous Media_第4頁
《塑性加工模擬及自動控制》課件:鄭江-esson 2-Continuous Media_第5頁
已閱讀5頁,還剩64頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ContinuousMediaZhengJiangChongqingUniversityApril-13-2016Outline1Objectives2ConservationAndContinuityEquations3ConstitutiveEquations4BoundaryandInitialConditions1ObjectivesIntroducetheequationsofconservationofmass,solute,momentumandenergy.IntroducetheprincipalequationsformaterialsbehaviorDefinetheboundaryconditionsandinitialconditions.介紹質(zhì)量守恒。。。。。。。。。介紹材料特性(材料力學(xué)行為)的主要公式解釋邊界條件和初始條件Theequationsofelectromagnetismwillnotbecoveredhere;wewilldiscussconservationofmass,ofmomentum,ofenergyandofsolute.Next,wewillcoverthemostimportantconstitutiveequationsformaterialbehaviorthatconnect,forexample:stresstostrainortovelocityindeformationorflowproblems;orenthalpyandheatfluxtotemperatureinheattransfercalculations;or,finally,thefluxofsolutetoconcentrationindiffusion.Thederivationoftheseequationswillbedoneintheperspectiveofsubsequentapplicationsthatmayinvolvetwodifferentscales.方程的推導(dǎo)將運(yùn)用在兩個(gè)尺度Atthemacroscopiclevel,theconservationandconstitutiveequationsallowmodeling,orevenoptimization,ofanindustrialprocessorsimulationofthebehaviorofasampleundergoingmechanicaltesting.在宏觀尺度,守恒和本構(gòu)方程允許建模,甚至優(yōu)化of一個(gè)工業(yè)過程或行為的模擬of進(jìn)行機(jī)械測試的樣本Atthemicroscopicscale,theequationscanbeusedtodescribetheformationandevolutionofthemicrostructure(dendrites,spherulites,lamellae,orfibers,etc.),theinteractionbetweenafiberandthematrixincompositematerials,orthedeformationofacrystallatticearoundadislocation.在微觀層面,方程可以用來描述微觀結(jié)構(gòu)的形成和演化(樹突,球晶、薄片或纖維,等等),纖維和基質(zhì)之間的相互作用in復(fù)合材料or一個(gè)位錯(cuò)周圍的晶格的變形。HomogenizationRollingAnnealCasting1mEngineBlock1-10mmMacrostructureGrainsMacroporosityPropertiesHigh-cyclefatigueDuctility~100-500mMicrostructureEutecticPhaseMicroporosityIntermetallicPropertiesYieldstrengthTensilestrengthHigh-cyclefatigueLow-cyclefatigueThermalGrowthDuctility~10-100?AtomaticStructureCrystalStructureInterfaceStructurePropertiesThermalGrowthYieldstrength~3-100nmNanostructurePrecipitatePropertiesYieldstrengthThermalGrowthTensilestrengthLow-cyclefatigueDuctilityBasedonprocessingflowchartBasedonthemetallurgicallengthscalesFigure1Thedifferentscalesappearinginmaterialsscience.Aturbineblade(a),solidifiedinaceramicmold(investmentcasting),measuresafewdozencentimeters.Itiscomposedofgrainswhichareclearlyvisibleafterchemicaletching(scale:afewmillimeters),whichthemselvesaremadeupofdendriteswhicharespacedatafewdozentohundredsofmicrons(b).In(c)isshownaschematicatatomicscaleofthetransformationfromaliquidtoasolidforametalalloyduringtheformationofsuchabladebyprecisioncasting.1.2ConservationandContinuityEquationsFigure2Inthecontinuouscastingofaluminum(a),liquidmetalisinjectedfromanozzlethroughadistributionbagwhichfiltersoutinclusionsandoxideskindebris.Themetalcoolsoncontactwithamold,whichitselfiscooledbycirculatingwaterandwaterspraying.Solidmetalisextractedcontinuouslybyajackattachedtoabottomblock.Convectionintheliquid(indicatedbyarrows)cantransportgrowinggrainsofaluminuminthe‘mushy'region(b)Theenvironmentisnothomogeneousasitiscomposedofatleasttwophase,namelysolidandliquid.Thephenomenaoccursatmultiscale.Itcanbedescribedbyfourconservationequations(mass,momentum,energyandsolute)Thetypeofbehavior(elastic,plastic,viscous,etc.)andalsothevaluesofthermo-mechanicalpropertiesofthematerial(specificmass,viscosity,elasticmodulus,strain-hardeningcoefficient,thermalconductivity,etc.)enterintotheconstitutiveequationsforthedifferentphasesofthematerials.NoticeFigure3Afewareasofmaterialssciencewheremodelingplaysanimportantrole:polymerinjection(a),waterdiffusioninconcrete(b),deformationofatestspecimenundertension(c)1.2.1Definition“Nothingislost,nothingiscreated,everythingistransformed”-------

Lavoisier‘sprincipleFigure4Diagramofthecalculationdomainnanditsboundaryon(a).Theoutgoingnormalvectornandthetangentvectorτarealsoshown.Inthreedimensions(b),theretwotangentvectors.In(c),thevolumeelementΔVisshownwiththevelocitiesinthemediaateachfaceforthederivationoftheconservationequations.Ω的計(jì)算范圍和邊界?Ω是圖a,向外的法向量和切向量也如圖示;在b中的三維圖里,有兩個(gè)切向量;c中,體積元素ΔV和它在介質(zhì)中每個(gè)表面的速度一起顯示出來,用于本構(gòu)方程的推導(dǎo)。Inthefirst,calledtheLagrangian,analogoustotraditionalmechanics,wefollowthematerialelementthroughitsmovements(Forsoliddeformation);拉格朗日,類似于經(jīng)典力學(xué),我們遵從材料元素的運(yùn)動Secondly,Eulerian,thereferenceframeisfixedandwewatchwhathappensatapointasafunctionoftime.(Forfluidmechanics)歐拉,修正了參考坐標(biāo)系,并且我們能觀察到隨時(shí)間發(fā)生了什么Twopossibleapproachedtodescribeconservation(ofmass,energy,momentum,etc)AslongasthedomainΔVissmall,wecanmaketheassumptionthat,oneachface,thevaluesconsideredareconstant.

ΔV足夠小時(shí),我們能夠假設(shè),在每個(gè)面(所取的ΔV)上,值是恒定不變的。1.2.2

EquationofconservationofmassThissumincludesonlythetwocontributionsexpressingthatthemassvariationinsidetheelementmustbeduetotransferofmassacrossthefacesbythevelocityfieldv.

Thereisnodiffusion,norproductionofmass.Themassvariationinsidetheelementisgivenby:ThetotalquantityofmaterialleavingthevolumeΔVisgivenby:Theintegral(1.2)canbemanipulatedas:Thereisneitherlossnorcreationofmaterial:Stationarycase:Incompressible:1.2.3ConservationofsoluteAsforthemasssumderivedabove,atemporalvariationofthequantityinsolutioninthevolumeelementaswellasatransporttermcontainingthevelocityfieldwillappearinthesum.Twonewcontributionsneedtobetakenintoaccount.Thefirstisadiffusiveterm擴(kuò)散項(xiàng)

associatedwithconcentrationgradients.Thesecondisasource

term(orsink)forchemicalreactions.isthenumberofmolesthatappearordisappearlocallyperunittimeandunitvolume.Weobtainthelocalequationfortheconservationofsolute.Formassspecificconcentration.1.2.4ConservationofmomentumFigure5Thesurfaceforces,T,andthegravityforce,ρg,actingonasmallvolumeelementΔV.Takingthesumofthecontributionstotheforcesactingonthesurfaceandonthevolume,weobtainforthecomponentx:Themomentumfluxinthexdirectionenteringorleavingthedomainisgivenby:Weobtainforthexcomponentoftheconservationofmomentum:Allthreedirectionalcomponentsofthemomentumcanbeexpressedasfollows:Forquasi-staticproblem:1.2.5Displacement,strain,strainrateOveraperiodoftime,displacementsofthematerialoccurduetotheappliedstressandvolumeforces.InLagrangiancoordinates,themovementofthematerialisdescribedbythesetoftrajectoriesofallthepointsinthematerial:,wherexoistheinitialpositionofapointattimet=0Thedisplacementu(xo,t)ofapointxoattimetisnaturallydefinedasthedifferencebetweenitspositionattimetanditsinitialposition:Figure7Forgingofasolidtoobtainacomplexform(a)andtwo-dimensionalrepresentationofthedisplacements(b)forsuchaprocessTosimplifytheexpression,itisnecessaryatthisstagetoswitchtothecoordinatenotation(x1,x2,x3)inplaceof(x,y,z).WhereistheKroneckerdeltafunctionThisequationdefinesthegradienttensorofthetransformationF=I+Gradu.Theresultisasymmetricsecondordertensor,a3x3matrixcalledtherightCauchy-Greenstraintensor,orCauchy'sdilatationtensor,Returbingtothe(x,y,z)coordinates,thesymmetricstraintensoriswritten:Figure8Illustrationofthedifferentelementarystraincomponentsforaparallelepiped.Wheredesignatesthevelocityvectorassociatedwiththedisplacementvectoru.ThisvelocityissimplythatofapointinLagrangiancoordinates:EngineeringstrainThe

engineeringnormalstrain

or

engineeringextensionalstrain

or

nominalstrain

e

ofamateriallineelementorfiberaxiallyloadedisexpressedasthechangeinlengthΔL

perunitoftheoriginallength

L

ofthelineelementorfibers.Thenormalstrainispositiveifthematerialfibersarestretchedandnegativeiftheyarecompressed.Thus,wehave

eisthe

engineeringnormalstrain,

Listheoriginallengthofthefiberandislisthefinallengthofthefiber.

StretchstrainTheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThisequationimpliesthatthenormalstrainiszero,sothatthereisnodeformationwhenthestretchisequaltounity.TheextensionratioisapproximatelyrelatedtotheengineeringstrainbyThe

truestrain

ε,(althoughnothingisparticularly"true"aboutitcomparedtoothervaliddefinitionsofstrain).Consideringanincrementalstrain.thetruestrainisobtainedbyintegratingthisincrementalstrain:where

e

istheengineeringstrain.Thetruestrainprovidesthecorrectmeasureofthefinalstrainwhendeformationtakesplaceinaseriesofincrements,takingintoaccounttheinfluenceofthestrainpath.TruestrainTheGreenstrainisdefinedas:GreenstrainAlmansistrainTheAlmansistrainisdefinedas:NormalstrainConsideratwo-dimensionalinfinitesimalrectangularmaterialelementwithdimensions

,whichafterdeformation,takestheformofarhombus.FromthegeometryoftheadjacentfigurewehaveForverysmalldisplacementgradientsthesquaresofthederivativesarenegligibleandwehaveThenormalstraininthex

directionoftherectangularelementisdefinedbySimilarly,thenormalstrainintheydirection,andzdirectionbecomes

ShearstrainTheengineeringshearstrain()isdefinedasthechangeinanglebetweenlinesand,thereforeFromthegeometryofthefigure,wehaveForsmalldisplacementgradientswehaveForsmallrotations,i.e.αandβare,wehavetanα≈

α,tanβ

β,thereforeByinterchangingxandyanduxanduy,itcanbeshownthat,similarly,forthey-zplaneandz-xplane,wehaveGeneralthree-dimensionalbodywithan8-nodethree-dimensionalelement1.2.6VirtualpowerThebodyislocatedinthefixed(stationary)coordinatesystemX,Y,ZConsideringthebodysurfacearea,thebodyissupportedontheareaSuwithprescribeddisplacementsUSuandissubjectedtosurfaceforcesfsf(forcesperunitsurfacearea)onthesurfaceareaSf.ThebodyissubjectedtoexternallyappliedbodyforcesfB(forcesperunitvolume)andconcentratedloadsRc(whereidenotesthepointofloadapplication).WeintroducetheforcesRcasseparatequantities,althougheachsuchforcecouldalsobeconsideredsurfacetractionsfsfoveraverysmallarea.Ingeneral,theexternallyappliedforceshavethreecomponentscorrespondingtotheX,Y,Zcoordinateaxes:U=USuonthesurfacearea.ThestrainscorrespondingtoUareCisthestress-strainmaterialmatrixandthevector

denotesgiveninitialstresses1.2.7ConservationofEnergyIngeneral,thefirstlawofthermodynamicstellsusthatthevariationoftotalenergyofadomainunderconsiderationisduetothemechanicalpoweroftheexternalforces,Pmech,andthecaloricpowerapplied,PcalThetotalenergyiscomposedofthekineticenergy,Ebandtheinternalenergy,Ej.Puttingallthetermstogether:Thesumofthefirstthreetermsontherighthandsideoftheequationisthedeformationpower.1.2.8UnifiedformoftheconservationequationsTheconservationequationsderivedabovearesimilarinthattheyallcontainatemporalvariationterm,anadvectivetransportterm,andsomehaveadiffusiontermandasourceterm.Theycanbereducedtoasinglegeneralequation:1.3ConstitutiveEquationsIn

physics

and

engineering,a

constitutiveequation

or

constitutiverelation

isarelationbetweentwophysicalquantities.1.3.1Constitutiveequationsformass1.3.2ConstitutiveequationsforsoluteFigure9DiagramofdiffusionaccordingtoFick'sfirstlawrelatingthechemicalfluxtotheconcentrationgradientThefluxcangenerallybeexpressedintermsofthegradientoftheconcentrationbyFick’sfirstlaw:whereDjisthediffusioncoefficient.1.3.3ConstitutiveequationsforEnergyConsideringthepressureconstant,whichisagoodapproximationforcondensedmatter,thespecificenthalpyofaphase,H,isgivenby:whereKisthethermalconductivityofthematerial.Thediffusiveheatflux,jT,isgivenbyanequationsimilartoFick'sfirstlaw(Fourier’slaw):whereEistheelectricalfield(Voltage),jEtheelectricalcurrentdensity,andρEelectricalresistivity.Inthecaseofchemicalreactions,theheatsourcetermbecomesasumoverallthechemicalspecies:Thesourcetermintroducedbyaphasetransformationwillbetreatedindetailinchapter5.Strictlyspeaking,thelatentheatperunitmass,Lα/β,associatedwithaphasetransformationα→β,isnotavolumetricsourcetermasitisproducedatthemovinginterfaceα/β.1.3.4ConstitutiveequationsforMaterials:quasi-staticcaseInthesimplestcase,thatoflinearelasticity,wetrytorelatethestresstensorσtothestrainε(x,y,z).Beingsymmetric,(σij=σjiandεij=εji),thesetwotensorsonlyhavesixindependentcomponents.Inthecoordinates(x,y,z),Hooke’slawrelatingthesixcomponentstakestheform:Thematrix[Del]istheelasticitymatrix.whereEistheelasticmodulusandvpisPoisson’scoefficient.Assumingthatthematerialisstretchedorcompressedalongtheaxialdirection:Acubewithsidesoflength

L

ofanisotropiclinearlyelasticmaterialsubjecttotensionalongthexaxis,withaPoisson‘sratioofν.Thegreencubeisunstrained,theredisexpandedinthe

x

directionbyduetotension,andcontractedinthe

y

and

z

directionsby?Lduetotension,andcontractedinthe

y

and

z

directionsby

?L’.Therelativechangeofvolume

ΔV/V

ofacubeduetothestretchofthematerialcannowbecalculated.UsingV=L3andV+ΔV=(L+ΔL)(L-ΔL’)2(x+Δx)1-2ν

=x1-2ν+(1-2ν)·x-2ν

·Δx-

2ν(1-2ν)·x-2ν-1

·Δx2………

Theproblemencounteredinmaterialsscienceisthatmostofthetimethematerialdoesnothavelinearelasticbehavior;rather,itcanundergoplasticstrain,εpl.Inadditiontothiscomponent,othersofathermalnature,εth,orassociatedwithphasetransformations,εtr(volumechanges),cancontributetothelocaltotalstrain,ε,givenby(1.36).Ingeneral,onehas:1.4BoundaryandInitialConditions1.4.1GeneralitiesInanonstationaryproblem,thefirsttermoftheequationrequiresthespecificationofthevaluesofthefield(x,t=0)ateverypointinthedomainΩattimet=0.Thisistheinitialcondition.Inthesameequation,therearetwointegralsontheboundaryofthedomain:thefirstinvolvesthenormalvelocitycomponent,vn=v·n,andcorrespondstothetransportofthequantityacrossthesurface,whereasthesecondisrelatedtothefluxenteringorleavingthedomainatthesurfacebydiffusion,j=j·n.n.Itcanbeseenthatitwillbenecessarytospecifythesetermsatthesurfacetodeterminewhathappensintheinterior.Theseareboundaryconditions.Theboundaryconditionsfordiffusiveproblemsaredividedintotwotypes:I.Anaturalconditionexpressesdirectlythevalueofjontheboundary.Threecasesofthistypearegenerallyconsidered:I.1ThehomogeneousNeumannconditionisanullflux:I.2TheNeumannconditioncorrespondstoanonzerofluxgivenontheboundary:I.3TheCauchyormixedconditionconsistsofalinearrelationbetweenthefluxandthevalueofthevariableitself:II.AnessentialconditionoraDirichletconditionconsistsofspecifyingthevariabledirectlyratherthanthediffusiveflux,Thebaroverthevariableontherightindicatesthatitisanimposedvalue.Thisvaluecanbeafunctionofpositionandtime.1.4.2SolutetransferAnessentialconditionmeansspecifyingthevalueofconcentrationofsoluteionapartofthedomainboundary.ThenaturalhomogeneousNeumanncondition,AnaturalnonhomogeneousNeumannconditioncorrespondstoafixed,nonzero,solutefluxatthesurface.Amixed,Cauchy,boundaryconditioncanbeexpressedintheform:whereαisachemicaltransfercoefficientbetweenthesur

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論