版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年廣東省中山市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
2.A.1/2f(2x)+CB.f(2x)+CC.2f(2x)+CD.1/2f(x)+C
3.
4.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1
5.
6.
7.
8.
9.
10.A.
B.
C.
D.
11.
12.設(shè)y=sin(x-2),則dy=()A.A.-cosxdx
B.cosxdX
C.-cos(x-2)dx
D.cos(x-2)dx
13.設(shè)函數(shù)f(x)在[a,b]上連續(xù),且f(a)·f(b)<0,則必定存在一點(diǎn)ξ∈(a,b)使得()A.f(ξ)>0B.f(ξ)<0C.f(ξ)=0D.f(ξ)=0
14.
15.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
16.A.f(1)-f(0)
B.2[f(1)-f(0)]
C.2[f(2)-f(0)]
D.
17.
A.-1/2
B.0
C.1/2
D.1
18.微分方程y''-7y'+12y=0的通解為()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
19.
20.設(shè)函數(shù)f(x)滿足f'(sin2x=cos2x,且f(0)=0,則f(x)=()A.
B.
C.
D.
二、填空題(20題)21.
22.
23.
24.
25.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則x2dxdy化為極坐標(biāo)系下的二重積分的表達(dá)式為________。
26.
27.
28.
29.
30.31.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.
32.
33.直線的方向向量為________。
34.
35.
36.
37.38.
39.
40.
三、計(jì)算題(20題)41.
42.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
43.
44.證明:45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.46.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.47.求曲線在點(diǎn)(1,3)處的切線方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
49.
50.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.51.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
52.53.求微分方程的通解.54.55.
56.57.將f(x)=e-2X展開為x的冪級(jí)數(shù).58.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.求∫xlnxdx。
62.63.
64.
65.
66.求微分方程y"-4y'+4y=e-2x的通解。
67.
68.
69.
70.設(shè)x2為f(x)的原函數(shù).求.五、高等數(shù)學(xué)(0題)71.
則b__________.
六、解答題(0題)72.求方程(y-x2y)y'=x的通解.
參考答案
1.D
2.A本題考查了導(dǎo)數(shù)的原函數(shù)的知識(shí)點(diǎn)。
3.C
4.B由導(dǎo)數(shù)的定義可知
可知,故應(yīng)選B。
5.B
6.D
7.D
8.C
9.D
10.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
11.D
12.D本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
可知應(yīng)選D.
13.D
14.B
15.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
16.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.
可知應(yīng)選D.
17.B
18.C因方程:y''-7y'+12y=0的特征方程為r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解為:y=C1e3x+C2e4x
19.D
20.D21.1
22.(sinx+cosx)exdx(sinx+cosx)exdx解析:
23.0<k≤10<k≤1解析:
24.F'(x)25.因?yàn)镈:x2+y2≤a2(a>0),y≥0,所以令且0≤r≤a,0≤0≤π,則=∫0πdθ∫0acos2θ.rdr=∫0πdθ∫0ar3cos2θdr。
26.x=-3
27.
28.00解析:
29.2
30.
31.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
32.e1/2e1/2
解析:33.直線l的方向向量為
34.
35.
36.0
37.
本題考查的知識(shí)點(diǎn)為求直線的方程.
由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為
38.1/6
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
39.
40.eyey
解析:
41.
42.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
43.
則
44.
45.由二重積分物理意義知
46.
47.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
列表:
說明
49.
50.
51.
52.
53.
54.
55.由一階線性微分方程通解公式有
56.
57.58.由等價(jià)無窮小量的定義可知59.函數(shù)的定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度大數(shù)據(jù)中心建設(shè)與運(yùn)營(yíng)服務(wù)合同規(guī)范3篇
- 二手房交易合同模板2024一
- 2024物業(yè)租賃合同中的違約金計(jì)算方式
- 二零二五版船舶環(huán)保技術(shù)改造項(xiàng)目股份投資合同3篇
- 關(guān)于2025年度環(huán)保設(shè)施運(yùn)營(yíng)維護(hù)的詳細(xì)合同
- 專用面粉生產(chǎn)與供應(yīng)合同2024
- 2024淘寶天貓京東電商客服團(tuán)隊(duì)激勵(lì)考核合同3篇
- 2025年校園物業(yè)管理與服務(wù)保障合同書6篇
- 2025年度船舶建造與船員培訓(xùn)服務(wù)合同3篇
- 2024版公證處借款合同范文
- 2024高考復(fù)習(xí)必背英語詞匯3500單詞
- 消防控制室值班服務(wù)人員培訓(xùn)方案
- 《貴州旅游介紹》課件2
- 2024年中職單招(護(hù)理)專業(yè)綜合知識(shí)考試題庫(kù)(含答案)
- 無人機(jī)應(yīng)用平臺(tái)實(shí)施方案
- 挪用公款還款協(xié)議書范本
- 事業(yè)單位工作人員年度考核登記表(醫(yī)生個(gè)人總結(jié))
- 盾構(gòu)隧道施工數(shù)字化與智能化系統(tǒng)集成
- 【企業(yè)盈利能力探析文獻(xiàn)綜述2400字】
- 2019年醫(yī)養(yǎng)結(jié)合項(xiàng)目商業(yè)計(jì)劃書
- 2023年店鋪工程主管年終業(yè)務(wù)工作總結(jié)
評(píng)論
0/150
提交評(píng)論