2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年陜西省商洛市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

2.

3.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay4.()。A.

B.

C.

D.

5.

6.

7.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

8.

9.()。A.

B.

C.

D.

10.A.A.

B.

C.

D.

11.建立共同愿景屬于()的管理觀念。

A.科學(xué)管理B.企業(yè)再造C.學(xué)習(xí)型組織D.目標(biāo)管理12.若在(a,b)內(nèi)f'(x)<0,f''(x)<0,則f(x)在(a,b)內(nèi)()。A.單減,凸B.單增,凹C.單減,凹D.單增,凸

13.

14.A.0

B.1

C.e

D.e2

15.

16.

17.下列命題中正確的有()A.A.

B.

C.

D.

18.設(shè)f(x)為連續(xù)函數(shù),則等于()A.A.

B.

C.

D.

19.20.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

21.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合22.A.A.2

B.

C.1

D.-2

23.

24.

25.

26.

27.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

28.

29.A.A.1

B.3

C.

D.0

30.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)31.微分方程y'+y=0的通解為y=A.e-x+C

B.-e-x+C

C.Ce-x

D.Cex

32.A.A.2B.1C.1/2D.0

33.

34.二次積分等于()A.A.

B.

C.

D.

35.設(shè)y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個(gè)特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解36.A.A.

B.

C.

D.

37.設(shè)x2是f(x)的一個(gè)原函數(shù),則f(x)=A.A.2x

B.x3

C.(1/3)x3+C

D.3x3+C

38.

A.

B.

C.

D.

39.A.dx+dyB.1/3·(dx+dy)C.2/3·(dx+dy)D.2(dx+dy)40.用待定系數(shù)法求微分方程y"-y=xex的一個(gè)特解時(shí),特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

41.

42.

43.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散44.A.1B.0C.2D.1/245.

等于()A.A.

B.

C.

D.0

46.A.A.

B.

C.

D.

47.設(shè)函數(shù)f(x)與g(x)均在(α,b)可導(dǎo),且滿足f'(x)<g'(x),則f(x)與g(x)的關(guān)系是

A.必有f(x)>g(x)B.必有f(x)<g(x)C.必有f(x)=g(x)D.不能確定大小48.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

49.對(duì)于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時(shí),下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex

B.y*=x(Ax+B)ex

C.y*=Ax3ex

D.y*=x2(Ax+B)ex

50.輥軸支座(又稱(chēng)滾動(dòng)支座)屬于()。

A.柔索約束B(niǎo).光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束二、填空題(20題)51.設(shè)z=ln(x2+y),則全微分dz=__________。52.

53.

54.

55.

56.57.58.59.

60.

61.

62.

63.設(shè)y=f(x)在點(diǎn)x0處可導(dǎo),且在點(diǎn)x0處取得極小值,則曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為_(kāi)_______。

64.

65.

66.微分方程y''+6y'+13y=0的通解為_(kāi)_____.

67.

68.

69.

70.

三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.73.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.74.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).76.

77.

78.

79.求曲線在點(diǎn)(1,3)處的切線方程.80.

81.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

82.

83.

84.證明:85.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.86.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

88.求微分方程的通解.

89.求微分方程y"-4y'+4y=e-2x的通解.

90.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)91.求微分方程y"-y'-2y=3ex的通解.

92.

93.

94.95.

96.

97.

98.

99.

100.五、高等數(shù)學(xué)(0題)101.已知

.

六、解答題(0題)102.求∫arctanxdx。

參考答案

1.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤。

2.B

3.C

4.D

5.C

6.B

7.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

8.A

9.A

10.D

11.C解析:建立共同愿景屬于學(xué)習(xí)型組織的管理觀念。

12.A∵f'(x)<0,f(x)單減;f''(x)<0,f(x)凸∴f(x)在(a,b)內(nèi)單減且凸。

13.D

14.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

15.B

16.C

17.B

18.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛-萊公式.

可知應(yīng)選D.

19.C

20.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱(chēng)性質(zhì)可知

可知應(yīng)選A。

21.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

22.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

23.B

24.A

25.B

26.A

27.B

28.A

29.B本題考查的知識(shí)點(diǎn)為重要極限公式.可知應(yīng)選B.

30.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

31.C

32.D

33.D

34.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

35.B如果y1,y2這兩個(gè)特解是線性無(wú)關(guān)的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設(shè)中沒(méi)有指出是否線性無(wú)關(guān),所以可能是通解,也可能不是通解,故選B。

36.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。

37.A由于x2為f(x)的一個(gè)原函數(shù),由原函數(shù)的定義可知f(x)=(x2)'=2x,故選A。

38.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.

因此選D.

39.C本題考查了二元函數(shù)的全微分的知識(shí)點(diǎn),

40.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1

y"-y=xex中自由項(xiàng)f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。

所以選A。

41.D

42.D

43.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

44.C

45.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于當(dāng)f(x)可積時(shí),定積分的值為一個(gè)確定常數(shù),因此總有

故應(yīng)選D.

46.C

47.D解析:由f'(x)<g'(x)知,在(α,b)內(nèi),g(x)的變化率大于f(x)的變化率,由于沒(méi)有g(shù)(α)與f(α)的已知條件,無(wú)法判明f(x)與g(x)的關(guān)系。

48.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

49.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。

50.C

51.52.1/6

本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.

53.2x

54.

55.

56.

57.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

58.e;本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

注意:可以變形,化為形式的極限.但所給極限通常可以先變形:

59.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

60.

解析:

61.3/23/2解析:

62.

63.y=f(x0)y=f(x)在點(diǎn)x0處可導(dǎo),且y=f(x)有極小值f(x0),這意味著x0為f(x)的極小值點(diǎn)。由極值的必要條件可知,必有f"(x0)=0,因此曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為y-f(x0)=f(x0)(x-x0)=0,即y=f(x0)為所求切線方程。

64.[-11]

65.066.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).

67.

68.ex269.解析:

70.71.由等價(jià)無(wú)窮小量的定義可知

72.

73.函數(shù)的定義域?yàn)?/p>

注意

74.

75.

列表:

說(shuō)明

76.

77.

78.

79.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

80.由一階線性微分方程通解公式有

81.

82.

83.

84.

85.

86.

87.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

88.

89.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

90.由二重積分物理意義知

91.相應(yīng)的齊次微分方程為y"-y'-2y=0.其特征方程為r2-r-2=0.其特征根為r1=-1,r2=2.齊次方程的通解為Y=C1e-x+C2e2x.由于f(x)=3ex,1不是其特征根,設(shè)非齊次方程的特解為y*=A

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論