2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年黑龍江省哈爾濱市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)z=tan(xy),則等于()A.A.

B.

C.

D.

2.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在

3.

4.設(shè)f(x)=x3+x,則等于()。A.0

B.8

C.

D.

5.A.A.4B.-4C.2D.-2

6.

7.A.A.

B.

C.

D.

8.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件

9.方程x=z2表示的二次曲面是A.A.球面B.橢圓拋物面C.柱面D.圓錐面

10.

11.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2

12.

13.

14.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

15.A.A.4/3B.1C.2/3D.1/3

16.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

17.

18.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于().A.A.2B.1C.-lD.-219.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx

20.

21.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

22.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.無關(guān)條件

23.

24.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.

B.

C.

D.

25.

26.微分方程yy'=1的通解為A.A.y=x2+C

B.y2=x+C

C.1/2y2=Cx

D.1/2y2=x+C

27.若xo為f(x)的極值點(diǎn),則()A.A.f(xo)必定存在,且f(xo)=0

B.f(xo)必定存在,但f(xo)不一定等于零

C.f(xo)可能不存在

D.f(xo)必定不存在

28.當(dāng)x→0時(shí),3x是x的().

A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量

29.

30.曲線y=x-ex在點(diǎn)(0,-1)處切線的斜率k=A.A.2B.1C.0D.-131.

32.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少

33.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動(dòng),輪緣上纏有不可伸長的細(xì)繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動(dòng)規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時(shí),輪緣上M點(diǎn)的速度、加速度和物體A的速度、加速度計(jì)算不正確的是()。

A.M點(diǎn)的速度為vM=0.36m/s

B.M點(diǎn)的加速度為aM=0.648m/s2

C.物體A的速度為vA=0.36m/s

D.物體A的加速度為aA=0.36m/s2

34.

35.A.0或1B.0或-1C.0或2D.1或-1

36.

37.設(shè)等于()A.A.-1B.1C.-cos1D.1-cos138.等于()。A.-1B.-1/2C.1/2D.1

39.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合40.A.A.-(1/2)B.1/2C.-1D.2

41.

42.

43.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

44.

45.

46.()。A.

B.

C.

D.

47.

48.

49.A.A.

B.

C.

D.

50.

二、填空題(20題)51.二階常系數(shù)齊次線性方程y"=0的通解為__________。

52.

53.

54.

55.

56.設(shè)y=cosx,則y'=______

57.若f(ex)=1+e2x,且f(0)=1,則f(x)=________。

58.

59.

60.設(shè)區(qū)域D:x2+y2≤a2(a>0),y≥0,則化為極坐標(biāo)系下的表達(dá)式為______.61.62.設(shè)y=(1+x2)arctanx,則y=________。63.64.

65.

66.67.

68.69.70.三、計(jì)算題(20題)71.

72.

73.74.求微分方程的通解.75.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.76.

77.求微分方程y"-4y'+4y=e-2x的通解.

78.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.79.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.80.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則81.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.82.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

83.求曲線在點(diǎn)(1,3)處的切線方程.84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

85.

86.87.證明:

88.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

89.

90.將f(x)=e-2X展開為x的冪級(jí)數(shù).四、解答題(10題)91.

92.

93.

94.

95.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

96.

97.

98.求∫sinxdx.99.

100.

五、高等數(shù)學(xué)(0題)101.設(shè)

則當(dāng)n→∞時(shí),x,是__________變量。

六、解答題(0題)102.

參考答案

1.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.

由于z=tan(xy),因此

可知應(yīng)選A.

2.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.

由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.

3.D解析:

4.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知

可知應(yīng)選A。

5.D

6.B

7.B本題考查的知識(shí)點(diǎn)為可導(dǎo)性的定義.當(dāng)f(x)在x=1處可導(dǎo)時(shí),由導(dǎo)數(shù)定義可得

8.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。

9.C方程x=z2中缺少坐標(biāo)y,是以xOy坐標(biāo)面上的拋物線x=z2為準(zhǔn)線,平行于y軸的直線為母線的拋物柱面。所以選C。

10.A解析:

11.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。

由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于

當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即

a+1=2。

可得:a=1,因此選C。

12.C

13.A

14.C

15.C

16.D

17.B

18.D本題考查的知識(shí)點(diǎn)為原函數(shù)的概念、復(fù)合函數(shù)求導(dǎo).

19.B

20.B解析:

21.C

22.D

23.A

24.C

25.B

26.D

27.C

28.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

29.C

30.C

31.C

32.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.

33.B

34.D解析:

35.A

36.B解析:

37.B本題考查的知識(shí)點(diǎn)為可變上限的積分.

由于,從而知

可知應(yīng)選B.

38.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

39.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2

40.A

41.A

42.A

43.B本題考查了一階線性齊次方程的知識(shí)點(diǎn)。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時(shí),f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時(shí)也可用變量分離.

44.C解析:

45.A

46.C由不定積分基本公式可知

47.C解析:

48.A

49.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

可知應(yīng)選A.

50.A解析:

51.y=C1+C2x。

52.

53.2/554.1

55.

56.-sinx

57.因?yàn)閒"(ex)=1+e2x,則等式兩邊對(duì)ex積分有

58.22解析:

59.1

60.

;本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題.

由于x2+y2≤a2,y>0可以表示為

0≤θ≤π,0≤r≤a,

因此

61.1/2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于

62.因?yàn)閥=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。63.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)為奇函數(shù),因此

64.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。

65.F'(x)

66.

67.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂區(qū)間。由于所給級(jí)數(shù)為不缺項(xiàng)情形,

68.69.3(x-1)-(y+2)+z=0(或3x-y+z=5).

本題考查的知識(shí)點(diǎn)為平面與直線的方程.

由題設(shè)條件可知應(yīng)該利用點(diǎn)法式方程來確定所求平面方程.

所給直線z的方向向量s=(3,-1,1).若所求平面π垂直于直線1,則平面π的法向量n∥s,不妨取n=s=(3,-1,1).則由平面的點(diǎn)法式方程可知

3(x-1)-[y-(-2)]+(z-0)=0,

即3(x-1)-(y+2)+z=0

為所求平面方程.

或?qū)憺?x-y+z-5=0.

上述兩個(gè)結(jié)果都正確,前者3(x-1)-(y+2)+z=0稱為平面的點(diǎn)法式方程,而后者3x-y+z-5=0

稱為平面的-般式方程.70.2本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

f'(x)=(x2)'=2x,

f"(x)=(2x)'=2.

71.

72.

73.

74.75.函數(shù)的定義域?yàn)?/p>

注意

76.由一階線性微分方程通解公式有

77.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

78.

79.由二重積分物理意義知

80.由等價(jià)無窮小量的定義可知

81.

82.

83.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

84.

列表:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論