版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年湖南省常德市普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件
2.
3.
4.
5.A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
6.
7.用待定系數(shù)法求微分方程y"-y=xex的一個特解時,特解的形式是(式中α、b是常數(shù))。A.(αx2+bx)ex
B.(αx2+b)ex
C.αx2ex
D.(αx+b)ex
8.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
9.
10.
11.A.A.1
B.3
C.
D.0
12.().A.A.單調(diào)增加且為凹B.單調(diào)增加且為凸C.單調(diào)減少且為凹D.單調(diào)減少且為凸13.級數(shù)(a為大于0的常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)14.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx15.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件
16.當x→0時,x+x2+x3+x4為x的
A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小
17.
18.當x→0時,與x等價的無窮小量是
A.A.
B.ln(1+x)
C.C.
D.x2(x+1)
19.設(shè)y=f(x)為可導(dǎo)函數(shù),則當△x→0時,△y-dy為△x的A.A.高階無窮小B.等價無窮小C.同階但不等價無窮小D.低階無窮小20.當x→0時,2x+x2與x2比較是A.A.高階無窮小B.低階無窮小C.同階但不等價無窮小D.等價無窮小二、填空題(20題)21.
22.
23.
24.25.二元函數(shù)z=x2+3xy+y2+2x,則=______.
26.
27.
28.
29.設(shè)f(x)=e5x,則f(x)的n階導(dǎo)數(shù)f(n)(x)=__________.
30.過點M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為_________.
31.
32.
33.
34.
35.
36.
37.二元函數(shù)z=x2+3xy+y2+2x,則=________。
38.設(shè)f(x)=1+cos2x,則f'(1)=__________。
39.曲線y=x3+2x+3的拐點坐標是_______。
40.三、計算題(20題)41.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
45.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.46.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.47.48.證明:49.將f(x)=e-2X展開為x的冪級數(shù).
50.
51.
52.
53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
54.
55.
56.求曲線在點(1,3)處的切線方程.57.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.58.求微分方程的通解.59.當x一0時f(x)與sin2x是等價無窮小量,則60.四、解答題(10題)61.
62.63.(本題滿分8分)
64.
65.
66.設(shè)y=x2ex,求y'。
67.設(shè)函數(shù)f(x)=x3-3x2-9x,求f(x)的極大值。68.69.70.五、高等數(shù)學(xué)(0題)71.
=________.則f(2)=__________。
六、解答題(0題)72.
參考答案
1.B
2.D
3.B解析:
4.A
5.A
6.D解析:un、vn可能為任意數(shù)值,因此正項級數(shù)的比較判別法不能成立,可知應(yīng)選D。
7.Ay"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1
y"-y=xex中自由項f(x)=xex,α=1是特征單根,應(yīng)設(shè)y*=x(ax+b)ex=(αx2+bx)ex。
所以選A。
8.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標分別代入所設(shè)平面方程,可得方程組
故選A.
9.A
10.D
11.B本題考查的知識點為重要極限公式.可知應(yīng)選B.
12.B本題考查的知識點為利用一階導(dǎo)數(shù)符號判定函數(shù)的單調(diào)性和利用二階導(dǎo)數(shù)符號判定曲線的凹凸性.
13.A本題考查的知識點為級數(shù)絕對收斂與條件收斂的概念.
注意為p=2的p級數(shù),因此為收斂級數(shù),由比較判別法可知收斂,故絕對收斂,應(yīng)選A.
14.B
15.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。
16.A本題考查了等價無窮小的知識點。
17.A
18.B本題考查了等價無窮小量的知識點
19.A由微分的定義可知△y=dy+o(△x),因此當△x→0時△y-dy=o(△x)為△x的高階無窮小,因此選A。
20.B
21.e-3/222.2xsinx2;本題考查的知識點為可變上限積分的求導(dǎo).
23.22解析:
24.25.2x+3y+2本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)運算.
則
26.
解析:
27.
28.
29.
30.
31.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
32.
33.3/23/2解析:
34.
35.
36.22解析:37.因為z=x2+3xy+y2+2x,
38.-2sin2
39.(03)
40.
41.
列表:
說明
42.
43.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
44.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%45.由二重積分物理意義知
46.函數(shù)的定義域為
注意
47.
48.
49.
50.
51.
則
52.由一階線性微分方程通解公式有
53.
54.
55.
56.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.
58.59.由等價無窮小量的定義可知
60.
61.62.本題考查的知識點為兩個:定積分表示-個確定的數(shù)值;計算定積分.
這是解題的關(guān)鍵!為了能求出A,可考慮將左端也轉(zhuǎn)化為A的表達式,為此將上式兩端在[0,1]上取定積分,可得
得出A的方程,可解出A,從而求得f(x).
本題是考生感到困難的題目,普遍感到無從下手,這是因為不會利用“定積分表示-個數(shù)值”的性質(zhì).
這種解題思路可以推廣到極限、二重積分等問題中.63.本題考查的知識點為不定積分運算.
只需將被積函數(shù)進行恒等變形,使之成為標準積分公式形式的函數(shù)或利用變量替換求積分的函數(shù).
64.
65.
66.y'=(x2)'ex+x2(ex)'=2xex+x2ex=ex(x2+2x)。y'=(x2)'ex+x2(ex)'=2xex+x2ex=ex(x2+2x)。
67.
68.
69.
70.
71.72.本題考查的知識點為二重積分的計算(極坐標系).
利用極坐標,區(qū)域D可以表示為
0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招標須知購車招標要求3篇
- 居民區(qū)煤氣供應(yīng)與安全責(zé)任合同3篇
- 教育培訓(xùn)機構(gòu)砌體施工合同3篇
- 教育服務(wù)行業(yè)勞動合同標準3篇
- 教育機構(gòu)勞動合同原件3篇
- 展覽展示浮雕施工協(xié)議
- 企業(yè)教育貸款還款協(xié)議
- 防火設(shè)施維修施工合同
- 實驗室門套翻新合同
- 建筑施工租賃吊車合同
- 2025山東濰坊光明電力服務(wù)限公司招聘142人管理單位筆試遴選500模擬題附帶答案詳解
- 山東力明科技職業(yè)學(xué)院《互換性與測量技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河南省洛陽市2023-2024學(xué)年高二上學(xué)期期末考試數(shù)學(xué)試題(解析版)
- 《格力電器公司的戰(zhàn)略管理研究》5800字(論文)
- 三年級語文上冊 期末句子訓(xùn)練專項訓(xùn)練(四)(含答案)(部編版)
- 美團配送站長述職報告
- 2024版年度中華人民共和國傳染病防治法
- 重慶氣體行業(yè)協(xié)會
- 企業(yè)中高層人員安全管理培訓(xùn)--責(zé)任、案例、管理重點
- 小學(xué)五年級思政課教案三篇
- 高強螺栓施工記錄
評論
0/150
提交評論