版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年四川省自貢市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.設(shè)y=3-x,則y'=()。A.-3-xln3
B.3-xlnx
C.-3-x-1
D.3-x-1
2.滑輪半徑r=0.2m,可繞水平軸O轉(zhuǎn)動,輪緣上纏有不可伸長的細繩,繩的一端掛有物體A,如圖所示。已知滑輪繞軸0的轉(zhuǎn)動規(guī)律φ=0.15t3rad,其中t單位為s,當(dāng)t=2s時,輪緣上M點的速度、加速度和物體A的速度、加速度計算不正確的是()。
A.M點的速度為vM=0.36m/s
B.M點的加速度為aM=0.648m/s2
C.物體A的速度為vA=0.36m/s
D.物體A的加速度為aA=0.36m/s2
3.
4.A.
B.
C.
D.
5.
6.()。A.3B.2C.1D.0
7.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
8.A.1-cosxB.1+cosxC.2-cosxD.2+cosx
9.
10.
11.級數(shù)()。A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
12.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
13.
14.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時,有()A.△y>dy>0
B.△<dy<0
C.dy>Ay>0
D.dy<△y<0
15.下列命題中正確的有().
16.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。
A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同
17.下列反常積分收斂的是()。A.∫1+∞xdx
B.∫1+∞x2dx
C.
D.
18.當(dāng)x→0時,x2是x-ln(1+x)的().
A.較高階的無窮小B.等價無窮小C.同階但不等價無窮小D.較低階的無窮小
19.等于()。A.-1B.-1/2C.1/2D.1
20.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.
28.
29.
30.直線的方向向量為________。
31.
32.
33.∫(x2-1)dx=________。
34.設(shè)sinx為f(x)的原函數(shù),則f(x)=______.
35.
36.設(shè)z=ln(x2+y),則全微分dz=__________。
37.
38.
39.
40.
三、計算題(20題)41.
42.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
44.
45.將f(x)=e-2X展開為x的冪級數(shù).
46.求微分方程y"-4y'+4y=e-2x的通解.
47.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
49.
50.
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.求微分方程的通解.
53.
54.求曲線在點(1,3)處的切線方程.
55.
56.
57.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
58.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
60.證明:
四、解答題(10題)61.
62.
63.
64.
65.求微分方程y"+9y=0的通解。
66.將展開為x的冪級數(shù).
67.
68.
69.
70.計算
五、高等數(shù)學(xué)(0題)71.y=ze-x在[0,2]上的最大值=__________,最小值=________。
六、解答題(0題)72.
參考答案
1.Ay=3-x,則y'=3-x。ln3*(-x)'=-3-xln3。因此選A。
2.B
3.B解析:
4.B
5.B
6.A
7.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
8.D
9.C
10.A
11.A本題考查的知識點為級數(shù)的絕對收斂與條件收斂。
由于的p級數(shù),可知為收斂級數(shù)。
可知收斂,所給級數(shù)絕對收斂,故應(yīng)選A。
12.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組
故選A.
13.C解析:
14.B
15.B解析:
16.D
17.DA,∫1+∞xdx==∞發(fā)散;
18.C解析:本題考查的知識點為無窮小階的比較.
由于
可知當(dāng)x→0時,x2與x-ln(1+x)為同階但不等價無窮小.故應(yīng)選C.
19.C本題考查的知識點為定積分的運算。
故應(yīng)選C。
20.D本題考查了曲線的拐點的知識點
21.-5-5解析:
22.本題考查的知識點為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。
23.
解析:
24.
解析:
25.對已知等式兩端求導(dǎo),得
26.1/2
27.
解析:
28.
本題考查的知識點為初等函數(shù)的求導(dǎo)運算.
本題需利用導(dǎo)數(shù)的四則運算法則求解.
本題中常見的錯誤有
這是由于誤將sin2認(rèn)作sinx,事實上sin2為-個常數(shù),而常數(shù)的導(dǎo)數(shù)為0,即
請考生注意,不論以什么函數(shù)形式出現(xiàn),只要是常數(shù),它的導(dǎo)數(shù)必定為0.
29.y=-e-x+C
30.直線l的方向向量為
31.
32.
33.
34.cosxcosx解析:本題考查的知識點為原函數(shù)的概念.
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)'=cosx.
35.63/12
36.
37.
38.
39.
40.xex(Asin2x+Bcos2x)由特征方程為r2-2r+5=0,得特征根為1±2i,而非齊次項為exsin2x,因此其特解應(yīng)設(shè)為y*=Axexsin2x+Bxexcos2x=xex(Asin2x+Bcos2x).
41.
則
42.由等價無窮小量的定義可知
43.
44.
45.
46.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
47.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
48.函數(shù)的定義域為
注意
49.
50.
51.由二重積分物理意義知
52.
53.
54.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
55.
56.由一階線性微分方程通解公式有
57.
列表:
說明
58.
59.
60.
61.
62.
63.
64.
65.y"+9y=0的特征方程為r2+9=0特征值為r12=±3i故通解為y=C1cos3x+C2sin3x。y"+9y=0的特征方程為r2+9=0,特征值為r1,2=±3i,故通解為y=C1cos3x+C2sin3x。
66.
;本題考查的知識點為將初等函數(shù)展開為x的冪級數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版全新水電工程承包合同權(quán)利與義務(wù)
- 2025年度體育用品代工生產(chǎn)合同模板(專業(yè)運動系列)4篇
- 2025年度特色農(nóng)家樂經(jīng)營權(quán)轉(zhuǎn)讓合同范本4篇
- 2024綠色能源項目開發(fā)與合作合同
- 2024租賃合同租金計算方式
- 2024運輸及代收款合同
- 鋼質(zhì)機動貨船修造行業(yè)深度研究報告
- 2025年度個人知識產(chǎn)權(quán)質(zhì)押反擔(dān)保合同模板4篇
- 2025年個人網(wǎng)絡(luò)安全技術(shù)入股合作協(xié)議4篇
- 2025年云南基投資源開發(fā)有限公司招聘筆試參考題庫含答案解析
- DB33T 2570-2023 營商環(huán)境無感監(jiān)測規(guī)范 指標(biāo)體系
- 上海市2024年中考英語試題及答案
- 房屋市政工程生產(chǎn)安全重大事故隱患判定標(biāo)準(zhǔn)(2024版)宣傳海報
- 垃圾車駕駛員聘用合同
- 2025年道路運輸企業(yè)客運駕駛員安全教育培訓(xùn)計劃
- 南京工業(yè)大學(xué)浦江學(xué)院《線性代數(shù)(理工)》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024版機床維護保養(yǎng)服務(wù)合同3篇
- 《論拒不執(zhí)行判決、裁定罪“執(zhí)行能力”之認(rèn)定》
- 工程融資分紅合同范例
- 2024國家安全員資格考試題庫加解析答案
- 通信工程建設(shè)標(biāo)準(zhǔn)強制性條文匯編(2023版)-定額質(zhì)監(jiān)中心
評論
0/150
提交評論