版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年安徽省蕪湖市普通高校對(duì)口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無關(guān)條件
3.若,則下列命題中正確的有()。A.
B.
C.
D.
4.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.
5.A.A.
B.
C.
D.
6.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
7.A.A.
B.
C.
D.
8.
9.過曲線y=xlnx上M0點(diǎn)的切線平行于直線y=2x,則切點(diǎn)M0的坐標(biāo)是().A.A.(1,0)B.(e,0)C.(e,1)D.(e,e)10.設(shè)y=5x,則y'=A.A.5xln5
B.5x/ln5
C.x5x-1
D.5xlnx
11.
在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)12.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面
13.
14.方程x2+y2-z=0表示的二次曲面是()。A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面15.
16.
17.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)18.()A.A.(-∞,-3)和(3,+∞)
B.(-3,3)
C.(-∞,O)和(0,+∞)
D.(-3,0)和(0,3)
19.
20.
A.單調(diào)增加且收斂B.單調(diào)減少且收斂C.收斂于零D.發(fā)散二、填空題(20題)21.22.設(shè)當(dāng)x≠0時(shí),在點(diǎn)x=0處連續(xù),當(dāng)x≠0時(shí),F(xiàn)(x)=-f(x),則F(0)=______.23.
24.
25.
26.
27.
28.29.30.設(shè)y=ex/x,則dy=________。31.32.
33.
34.35.36.
37.38.若f'(x0)=1,f(x0)=0,則
39.
40.冪級(jí)數(shù)的收斂半徑為________。三、計(jì)算題(20題)41.
42.43.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.44.
45.求微分方程的通解.
46.
47.48.
49.求微分方程y"-4y'+4y=e-2x的通解.
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
52.將f(x)=e-2X展開為x的冪級(jí)數(shù).53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).54.證明:55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.56.求曲線在點(diǎn)(1,3)處的切線方程.57.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
58.
59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.
62.
63.
64.
(1)切點(diǎn)A的坐標(biāo)(a,a2).
(2)過切點(diǎn)A的切線方程。
65.(本題滿分8分)
66.
67.
68.
69.
70.五、高等數(shù)學(xué)(0題)71.已知
則
=()。
A.
B.
C.
D.
六、解答題(0題)72.
參考答案
1.A
2.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
3.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。
4.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.
f(x)=2sinx,
f'(x)=2(sinx)'=2cosx,
可知應(yīng)選B.
5.Dy=e-2x,y'=(e-2x)'=e-2x(-2x)'=-2e-2x,dy=y'dx=-2e-2xdx,故選D。
6.B
7.C
8.A
9.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.
由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f'(x0).
由于y=xlnx,可知
y'=1+lnx,
切線與已知直線y=2x平行,直線的斜率k1=2,可知切線的斜率k=k1=2,從而有
1+lnx0=2,
可解得x0=e,從而知
y0=x0lnx0=elne=e.
故切點(diǎn)M0的坐標(biāo)為(e,e),可知應(yīng)選D.
10.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。
11.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。
12.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.
13.D解析:
14.C本題考查的知識(shí)點(diǎn)為二次曲面的方程。
將x2+y2-z=0與二次曲面標(biāo)準(zhǔn)方程對(duì)照,可知其為旋轉(zhuǎn)拋面,故應(yīng)選C。
15.D
16.D解析:
17.A
18.D
19.A
20.C解析:
21.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.22.1本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.
由連續(xù)性的定義可知,若F(x)在點(diǎn)x=0連續(xù),則必有,由題設(shè)可知
23.本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系.
由于為初等函數(shù),定義域?yàn)?-∞,0),(0,+∞),點(diǎn)x=2為其定義區(qū)間(0,+∞)內(nèi)的點(diǎn),從而知
24.e
25.解析:
26.
27.
28.
29.
30.
31.32.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。
33.11解析:34.1.
本題考查的知識(shí)點(diǎn)為反常積分,應(yīng)依反常積分定義求解.
35.31/16;2本題考查了函數(shù)的最大、最小值的知識(shí)點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時(shí),f(x)最大,即b=2;當(dāng)x=2時(shí),f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.
36.
37.<038.-1
39.(-33)(-3,3)解析:40.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。41.由一階線性微分方程通解公式有
42.
43.
44.
則
45.
46.
47.
48.
49.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
50.由等價(jià)無窮小量的定義可知
51.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
52.
53.
列表:
說明
54.
55.
56.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.由二重積分物理意義知
58.
59.函數(shù)的定義域?yàn)?/p>
注意
60.
61.
62.
63.64.本題考查的知識(shí)點(diǎn)為定積分的幾何意義和曲線的切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 商業(yè)建筑瓦工施工承包合同
- 旅游業(yè)文化墻施工合同
- 橋梁工程分包施工合同
- 海參養(yǎng)殖員工職業(yè)倦怠預(yù)防合同
- 商業(yè)秘密保護(hù)律師聘用協(xié)議
- 酒店?duì)I銷策劃方案范文七篇
- 學(xué)期英語工作計(jì)劃三篇
- 學(xué)生心理健康教育與咨詢制度
- -婦產(chǎn)科醫(yī)生年度工作總結(jié)
- 員工辭職申請(qǐng)書模板匯編5篇
- 現(xiàn)代酒店管理智慧樹知到課后章節(jié)答案2023年下海南工商職業(yè)學(xué)院
- 2023-2024學(xué)年云南省昆明市西山區(qū)六上數(shù)學(xué)期末經(jīng)典模擬試題含答案
- 浙江省紹興市新昌縣2023-2024學(xué)年數(shù)學(xué)三上期末調(diào)研模擬試題含答案
- 笛卡爾環(huán)線性化技術(shù)的基本原理
- 人教版小學(xué)數(shù)學(xué)三年級(jí)上冊(cè)全套課件合集
- GB/T 10001.1-2023公共信息圖形符號(hào)第1部分:通用符號(hào)
- 資產(chǎn)評(píng)估常用數(shù)據(jù)與參數(shù)手冊(cè)
- 公園廣場(chǎng)保潔管理服務(wù)投標(biāo)方案
- 警察影像-江蘇警官學(xué)院中國(guó)大學(xué)mooc課后章節(jié)答案期末考試題庫2023年
- 金融隨機(jī)分析2課后答案
- 數(shù)控銑床工作臺(tái)三維運(yùn)動(dòng)伺服進(jìn)給系統(tǒng)設(shè)計(jì)-課程設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論