版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年廣東省肇慶市成考專(zhuān)升本高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)f(0)=0,且存在,則等于().A.A.f'(x)B.f'(0)C.f(0)D.f(x)
2.
3.設(shè)z=x3-3x-y,則它在點(diǎn)(1,0)處
A.取得極大值B.取得極小值C.無(wú)極值D.無(wú)法判定
4.按照盧因的觀點(diǎn),組織在“解凍”期間的中心任務(wù)是()
A.改變員工原有的觀念和態(tài)度B.運(yùn)用策略,減少對(duì)變革的抵制C.變革約束力、驅(qū)動(dòng)力的平衡D.保持新的組織形態(tài)的穩(wěn)定
5.A.A.3yx3y-1
B.yx3y-1
C.x3ylnx
D.3x3ylnx
6.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
7.A.
B.
C.
D.
8.
9.
10.設(shè)y=2x3,則dy=()
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
11.
12.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。
A.0≤α≤φ
B.0≤φ≤α
C.0<α<90。
D.0<φ<90。
13.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)
14.A.3B.2C.1D.0
15.
16.A.A.
B.
C.
D.
17.
18.
19.()。A.2ex+C
B.ex+C
C.2e2x+C
D.e2x+C
20.A.A.
B.
C.
D.
21.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
22.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。
A.軸線為直線的桿稱(chēng)為直桿B.軸線為曲線的桿稱(chēng)為曲桿C.等截面的直桿稱(chēng)為等直桿D.橫截面大小不等的桿稱(chēng)為截面桿
23.已知
則
=()。
A.
B.
C.
D.
24.
25.下列關(guān)于動(dòng)載荷Kd的敘述不正確的一項(xiàng)是()。
A.公式中,△j為沖擊無(wú)以靜載荷方式作用在被沖擊物上時(shí),沖擊點(diǎn)沿沖擊方向的線位移
B.沖擊物G突然加到被沖擊物上時(shí),K1=2,這時(shí)候的沖擊力為突加載荷
C.當(dāng)時(shí),可近似取
D.動(dòng)荷因數(shù)Ka因?yàn)橛蓻_擊點(diǎn)的靜位移求得,因此不適用于整個(gè)沖擊系統(tǒng)
26.已知函數(shù)f(x)的定義域是[一1,1],則f(x一1)的定義域?yàn)?)。
A.[一1,1]B.[0,2]C.[0,1]D.[1,2]27.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.
B.
C.
D.
28.
29.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)
B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0
C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)
D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)
30.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按
規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。
A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s
B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2
C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0
D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2
31.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
32.A.
B.
C.-cotx+C
D.cotx+C
33.A.A.2/3B.3/2C.2D.3
34.
35.
36.
A.
B.
C.
D.
37.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上()
A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值
38.
39.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。
A.圓周力FT=Fncosαcosβ
B.徑向力Fa=Fncosαcosβ
C.軸向力Fr=Fncosα
D.軸向力Fr=Fnsinα
40.設(shè)y=sin2x,則y等于().A.A.-cos2xB.cos2xC.-2cos2xD.2cos2x41.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
42.
43.
44.。A.2B.1C.-1/2D.045.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
46.
47.A.A.
B.
C.
D.
48.
49.
50.
二、填空題(20題)51.
52.設(shè)f(x)在x=1處連續(xù),53.廣義積分.54.
55.
56.
57.
58.
59.∫x(x2-5)4dx=________。
60.
61.若∫x0f(t)dt=2e3x-2,則f(x)=________。
62.設(shè)函數(shù)y=y(x)由方程x2y+y2x+2y=1確定,則y'=______.63.64.微分方程y"=y的通解為_(kāi)_____.
65.
66.67.68.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。69.
70.曲線y=x3—6x的拐點(diǎn)坐標(biāo)為_(kāi)_______.三、計(jì)算題(20題)71.求微分方程y"-4y'+4y=e-2x的通解.
72.
73.
74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).76.77.
78.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
79.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).80.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.81.求微分方程的通解.82.
83.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.84.證明:85.86.求曲線在點(diǎn)(1,3)處的切線方程.87.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
89.
90.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)91.
92.
93.
94.求y"+2y'+y=2ex的通解.
95.求曲線在點(diǎn)(1,3)處的切線方程.
96.
97.
98.
99.
100.五、高等數(shù)學(xué)(0題)101.設(shè)f(x)在x=a某鄰域內(nèi)連續(xù)且f(a)為極大值,則存在δ>0,當(dāng)x∈(a一δ,a+δ)時(shí),必有()。A.(x—a)[f(x)一f(a)]≥0
B.(x—a)[f(x)一f(a)]≤0
C.
D.
六、解答題(0題)102.展開(kāi)成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。
參考答案
1.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于存在,因此
可知應(yīng)選B.
2.A
3.C
4.A解析:組織在解凍期間的中心任務(wù)是改變員工原有的觀念和態(tài)度。
5.D
6.D南微分的基本公式可知,因此選D.
7.D本題考查的知識(shí)點(diǎn)為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
8.B
9.A
10.B
11.B
12.A
13.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)
f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。
令f'(x)=0得駐點(diǎn)x1=1,x2=2。
當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。
當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。
當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。
14.A
15.B解析:
16.C
17.D
18.A解析:
19.B
20.B本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)運(yùn)算.
由于z=tan(xy),因此
可知應(yīng)選B.
21.D解析:
22.D
23.A
24.C解析:
25.D
26.B∵一1≤x一1≤1∴0≤x≤2。
27.C
28.A
29.B
30.D
31.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
32.C本題考查的知識(shí)點(diǎn)為不定積分基本公式.
33.A
34.C
35.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。
36.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.
因此選D.
37.B因處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加.
38.B
39.C
40.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t.
41.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
42.B
43.D
44.A
45.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
46.B
47.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.
可知應(yīng)選A.
48.C
49.B
50.A
51.1/21/2解析:52.2本題考查的知識(shí)點(diǎn)為:連續(xù)性與極限的關(guān)系;左極限、右極限與極限的關(guān)系.
由于f(x)在x=1處連續(xù),可知必定存在,由于,可知=53.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.
54.
本題考查的知識(shí)點(diǎn)為定積分的換元法.
解法1
解法2
令t=1+x2,則dt=2xdx.
當(dāng)x=1時(shí),t=2;當(dāng)x=2時(shí),t=5.
這里的錯(cuò)誤在于進(jìn)行定積分變量替換,積分區(qū)間沒(méi)做變化.
55.
解析:
56.y=xe+Cy=xe+C解析:
57.(-∞0]
58.(1/2)x2-2x+ln|x|+C
59.
60.
61.6e3x
62.
;本題考查的知識(shí)點(diǎn)為隱函數(shù)的求導(dǎo).
將x2y+y2x+2y=1兩端關(guān)于x求導(dǎo),(2xy+x2y')+(2yy'x+y2)+2y'=0,(x2+2xy+2)y'+(2xy+y2)=0,因此y'=63.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.所給級(jí)數(shù)為缺項(xiàng)情形,由于64.y'=C1e-x+C2ex
;本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.
將方程變形,化為y"-y=0,
特征方程為r2-1=0;
特征根為r1=-1,r2=1.
因此方程的通解為y=C1e-x+C2ex.
65.
66.0
67.68.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱(chēng)之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。
69.70.(0,0).
本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).
依求曲線拐點(diǎn)的-般步驟,只需
71.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
72.
則
73.
74.
75.
列表:
說(shuō)明
76.
77.
78.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
79.
80.
81.82.由一階線性微分方程通解公式有
83.由二重積分物理意義知
84.
85.
86.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
87.由等價(jià)無(wú)窮小量的定義可知88.函數(shù)的定義域?yàn)?/p>
注意
89.
90.
91.
92.
93.
94.相應(yīng)微分方程的齊次微分方程為y"+2y'+y=0.其特征方程為r2+2r+1=0;特征根為r=-1(二重實(shí)根)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新形勢(shì)下覆銅板行業(yè)轉(zhuǎn)型升級(jí)戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢(shì)下招標(biāo)代理服務(wù)行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)本地生活服務(wù)行業(yè)并購(gòu)重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)主題酒店行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 哈爾濱城市職業(yè)學(xué)院《地理課件制作與版圖練習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷
- 桂林醫(yī)學(xué)院《教育學(xué)專(zhuān)業(yè)英語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州中醫(yī)藥大學(xué)《有機(jī)化學(xué)實(shí)驗(yàn)(上)》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴州醫(yī)科大學(xué)《生物統(tǒng)計(jì)與試驗(yàn)設(shè)計(jì)A》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025-2030年中國(guó)汽車(chē)美容行業(yè)開(kāi)拓第二增長(zhǎng)曲線戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國(guó)電影行業(yè)營(yíng)銷(xiāo)創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新概念英語(yǔ)第一冊(cè)單詞匯總打印版
- 敞開(kāi)式硬巖TBM掘進(jìn)操作參數(shù)的控制 方志威
- 健康管理主題PPT模板-健康管理
- 公路工程設(shè)計(jì)符合性評(píng)價(jià)意見(jiàn)
- 門(mén)診特定病種待遇認(rèn)定申請(qǐng)表
- 山西事業(yè)單位專(zhuān)業(yè)技術(shù)職務(wù)聘任管理
- 消防安全承諾書(shū)[新].doc
- 臺(tái)大公開(kāi)課--《紅樓夢(mèng)》筆記剖析
- 底總結(jié)報(bào)告2017年初開(kāi)場(chǎng)計(jì)劃策劃模版圖文可隨意編輯修改課件
- 詢(xún)問(wèn)調(diào)查筆錄內(nèi)容來(lái)自dedecms - 稅務(wù)局(稽查局)
- 石油化工中心化驗(yàn)室設(shè)計(jì)規(guī)范
評(píng)論
0/150
提交評(píng)論