版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),且關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍().A. B. C. D.2.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.3.下圖是民航部門統(tǒng)計(jì)的某年春運(yùn)期間,六個(gè)城市售出的往返機(jī)票的平均價(jià)格(單位元),以及相比于上一年同期價(jià)格變化幅度的數(shù)據(jù)統(tǒng)計(jì)圖,以下敘述不正確的是()A.深圳的變化幅度最小,北京的平均價(jià)格最高B.天津的往返機(jī)票平均價(jià)格變化最大C.上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng)D.相比于上一年同期,其中四個(gè)城市的往返機(jī)票平均價(jià)格在增加4.已知三棱錐P﹣ABC的頂點(diǎn)都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.5.三棱柱中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,,則異面直線與所成角的余弦值為()A. B. C. D.6.下列說(shuō)法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機(jī)變量服從正態(tài)分布(),若,則D.設(shè)是實(shí)數(shù),“”是“”的充分不必要條件7.已知實(shí)數(shù)集,集合,集合,則()A. B. C. D.8.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.9.設(shè)m,n為直線,、為平面,則的一個(gè)充分條件可以是()A.,, B.,C., D.,10.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.11.設(shè)點(diǎn)是橢圓上的一點(diǎn),是橢圓的兩個(gè)焦點(diǎn),若,則()A. B. C. D.12.已知向量,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)函數(shù),其中,若函數(shù)恰有4個(gè)零點(diǎn),則的取值范圍是__________.14.函數(shù)在上的最小值和最大值分別是_____________.15.若函數(shù)的圖像向左平移個(gè)單位得到函數(shù)的圖像.則在區(qū)間上的最小值為_(kāi)_______.16.已知,若的展開(kāi)式中的系數(shù)比x的系數(shù)大30,則______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)萬(wàn)眾矚目的第14屆全國(guó)冬季運(yùn)動(dòng)運(yùn)會(huì)(簡(jiǎn)稱“十四冬”)于2020年2月16日在呼倫貝爾市盛大開(kāi)幕,期間正值我市學(xué)校放寒假,寒假結(jié)束后,某校工會(huì)對(duì)全校100名教職工在“十四冬”期間每天收看比賽轉(zhuǎn)播的時(shí)間作了一次調(diào)查,得到如圖頻數(shù)分布直方圖:(1)若將每天收看比賽轉(zhuǎn)播時(shí)間不低于3小時(shí)的教職工定義為“冰雪迷”,否則定義為“非冰雪迷”,請(qǐng)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表;并判斷能否有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān);(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,再?gòu)倪@6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,18.(12分)設(shè)橢圓的離心率為,左、右焦點(diǎn)分別為,點(diǎn)D在橢圓C上,的周長(zhǎng)為.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)圓上任意一點(diǎn)P作圓E的切線l,若l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),求證:為定值.19.(12分)已知橢圓:的兩個(gè)焦點(diǎn)是,,在橢圓上,且,為坐標(biāo)原點(diǎn),直線與直線平行,且與橢圓交于,兩點(diǎn).連接、與軸交于點(diǎn),.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:為定值.20.(12分)已知函數(shù),其導(dǎo)函數(shù)為,(1)若,求不等式的解集;(2)證明:對(duì)任意的,恒有.21.(12分)設(shè)函數(shù),其中.(Ⅰ)當(dāng)為偶函數(shù)時(shí),求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.22.(10分)11月,2019全國(guó)美麗鄉(xiāng)村籃球大賽在中國(guó)農(nóng)村改革的發(fā)源地-安徽鳳陽(yáng)舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過(guò)1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過(guò)輪投球,用表示經(jīng)過(guò)第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)計(jì)算可估計(jì)得,請(qǐng)根據(jù)①中的值分別寫(xiě)出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)條件可知方程有且只有一個(gè)實(shí)根等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象,數(shù)形結(jié)合即可.【詳解】解:因?yàn)闂l件等價(jià)于函數(shù)的圖象與直線只有一個(gè)交點(diǎn),作出圖象如圖,由圖可知,,故選:B.【點(diǎn)睛】本題主要考查函數(shù)圖象與方程零點(diǎn)之間的關(guān)系,數(shù)形結(jié)合是關(guān)鍵,屬于基礎(chǔ)題.2.C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對(duì)導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點(diǎn)睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個(gè)角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫(huà)出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.3.D【解析】
根據(jù)條形圖可折線圖所包含的數(shù)據(jù)對(duì)選項(xiàng)逐一分析,由此得出敘述不正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),根據(jù)折線圖可知深圳的變化幅度最小,根據(jù)條形圖可知北京的平均價(jià)格最高,所以A選項(xiàng)敘述正確.對(duì)于B選項(xiàng),根據(jù)折線圖可知天津的往返機(jī)票平均價(jià)格變化最大,所以B選項(xiàng)敘述正確.對(duì)于C選項(xiàng),根據(jù)條形圖可知上海和廣州的往返機(jī)票平均價(jià)格基本相當(dāng),所以C選項(xiàng)敘述正確.對(duì)于D選項(xiàng),根據(jù)折線圖可知相比于上一年同期,除了深圳外,另外五個(gè)城市的往返機(jī)票平均價(jià)格在增加,故D選項(xiàng)敘述錯(cuò)誤.故選:D【點(diǎn)睛】本小題主要考查根據(jù)條形圖和折線圖進(jìn)行數(shù)據(jù)分析,屬于基礎(chǔ)題.4.D【解析】
由題意畫(huà)出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過(guò)求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點(diǎn)為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點(diǎn)睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計(jì)算能力,屬于中檔題.5.B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長(zhǎng)為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過(guò)向量的線性運(yùn)算、數(shù)量積運(yùn)算將問(wèn)題轉(zhuǎn)化為向量夾角的求解問(wèn)題.6.D【解析】
由特稱命題的否定是全稱命題可判斷選項(xiàng)A;可能相交,可判斷B選項(xiàng);利用正態(tài)分布的性質(zhì)可判斷選項(xiàng)C;或,利用集合間的包含關(guān)系可判斷選項(xiàng)D.【詳解】命題“,”的否定形式是“,”,故A錯(cuò)誤;,,則可能相交,故B錯(cuò)誤;若,則,所以,故,所以C錯(cuò)誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關(guān)的命題、正態(tài)分布、充分條件與必要條件等,是一道容易題.7.A【解析】
可得集合,求出補(bǔ)集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點(diǎn)睛】本題考查了集合的補(bǔ)集和交集的混合運(yùn)算,屬于基礎(chǔ)題.8.B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.9.B【解析】
根據(jù)線面垂直的判斷方法對(duì)選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對(duì)于A選項(xiàng),當(dāng),,時(shí),由于不在平面內(nèi),故無(wú)法得出.對(duì)于B選項(xiàng),由于,,所以.故B選項(xiàng)正確.對(duì)于C選項(xiàng),當(dāng),時(shí),可能含于平面,故無(wú)法得出.對(duì)于D選項(xiàng),當(dāng),時(shí),無(wú)法得出.綜上所述,的一個(gè)充分條件是“,”故選:B【點(diǎn)睛】本小題主要考查線面垂直的判斷,考查充分必要條件的理解,屬于基礎(chǔ)題.10.C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).11.B【解析】∵∵∴∵,∴∴故選B點(diǎn)睛:本題主要考查利用橢圓的簡(jiǎn)單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問(wèn)題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫(huà)出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、長(zhǎng)軸、短軸等橢圓的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.12.A【解析】
利用平面向量平行的坐標(biāo)條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.【點(diǎn)睛】本題考查向量平行定理,考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】∵,∴,∵函數(shù)y=f(x)?g(x)恰好有四個(gè)零點(diǎn),∴方程f(x)?g(x)=0有四個(gè)解,即f(x)+f(2?x)?b=0有四個(gè)解,即函數(shù)y=f(x)+f(2?x)與y=b的圖象有四個(gè)交點(diǎn),,作函數(shù)y=f(x)+f(2?x)與y=b的圖象如下,,結(jié)合圖象可知,<b<2,故答案為.點(diǎn)睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當(dāng)出現(xiàn)f(f(a))的形式時(shí),應(yīng)從內(nèi)到外依次求值.(2)當(dāng)給出函數(shù)值求自變量的值時(shí),先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記要代入檢驗(yàn),看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.14.【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題15.【解析】
注意平移是針對(duì)自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點(diǎn)睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問(wèn)題,涉及到圖象的平移變換、輔助角公式的應(yīng)用,是一道基礎(chǔ)題.16.2【解析】
利用二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),求得的值.【詳解】展開(kāi)式通項(xiàng)為:且的展開(kāi)式中的系數(shù)比的系數(shù)大,即:解得:(舍去)或本題正確結(jié)果:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)列聯(lián)表見(jiàn)解析,有把握;(2)分布列見(jiàn)解析,.【解析】
(1)根據(jù)頻率分布直方圖補(bǔ)全列聯(lián)表,求出,從而有的把握認(rèn)為該校教職工是否為“冰雪迷”與“性別”有關(guān).(2)在全?!氨┟浴敝邪葱詣e分層抽樣抽取6名,則抽中男教工:人,抽中女教工:人,從這6名“冰雪迷”中選取2名作冰雪運(yùn)動(dòng)知識(shí)講座.記其中女職工的人數(shù)為,則的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出的分布列和數(shù)學(xué)期望.【詳解】解:(1)由題意得下表:男女合計(jì)冰雪迷402060非冰雪迷202040合計(jì)6040100的觀測(cè)值為所以有的把握認(rèn)為該校教職工是“冰雪迷”與“性別”有關(guān).(2)由題意知抽取的6名“冰雪迷”中有4名男職工,2名女職工,所以的可能取值為0,1,2.且,,,所以的分布列為012【點(diǎn)睛】本題考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法,考查古典概型、排列組合、頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于中檔題.18.(1)(2)見(jiàn)解析【解析】
(1)由,周長(zhǎng),解得,即可求得標(biāo)準(zhǔn)方程.(2)通過(guò)特殊情況的斜率不存在時(shí),求得,再證明的斜率存在時(shí),即可證得為定值.通過(guò)設(shè)直線的方程為與橢圓方程聯(lián)立,借助韋達(dá)定理求得,利用直線與圓相切,即,求得的關(guān)系代入,化簡(jiǎn)即可證得即可證得結(jié)論.【詳解】(1)由題意得,周長(zhǎng),且.聯(lián)立解得,,所以橢圓C的標(biāo)準(zhǔn)方程為.(2)①當(dāng)直線l的斜率不存在時(shí),不妨設(shè)其方程為,則,所以,即.②當(dāng)直線l的斜率存在時(shí),設(shè)其方程為,并設(shè),由,,,由直線l與圓E相切,得.所以.從而,即.綜合上述,得為定值.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中定值問(wèn)題,考查了學(xué)生計(jì)算求解能力,難度較難.19.(1)(2)證明見(jiàn)解析【解析】
(1)根據(jù)橢圓的定義可得,將代入橢圓方程,即可求得的值,求得橢圓方程;(2)設(shè)直線的方程,代入橢圓方程,求得直線和的方程,求得和的橫坐標(biāo),表示出,根據(jù)韋達(dá)定理即可求證為定值.【詳解】(1)因?yàn)?,由橢圓的定義得,,點(diǎn)在橢圓上,代入橢圓方程,解得,所以的方程為;(2)證明:設(shè),,直線的斜率為,設(shè)直線的方程為,聯(lián)立方程組,消去,整理得,所以,,直線的直線方程為,令,則,同理,所以:,代入整理得,所以為定值.【點(diǎn)睛】本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線和橢圓的位置關(guān)系,考查橢圓中的定值問(wèn)題,屬于中檔題.20.(1)(2)證明見(jiàn)解析【解析】
(1)求出的導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)的性質(zhì)判斷函數(shù)的單調(diào)性,再利用函數(shù)單調(diào)性解函數(shù)型不等式;(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷在區(qū)間上單調(diào)遞減,結(jié)合可得結(jié)果.【詳解】(1)若,則.設(shè),則,所以在上單調(diào)遞減,在上單調(diào)遞增.又當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以所以在上單調(diào)遞增,又,所以不等式的解集為.(2)設(shè),再令,,在上單調(diào)遞減,又,,,,,.即【點(diǎn)睛】本題考查利用函數(shù)的導(dǎo)數(shù)來(lái)判斷函數(shù)的單調(diào)性,再利用函數(shù)的單調(diào)性來(lái)解決不等式問(wèn)題,屬于較難題.21.(Ⅰ)極小值,極大值;(Ⅱ)或【解析】
(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導(dǎo)數(shù),根據(jù)導(dǎo)函數(shù)零點(diǎn)列表分析導(dǎo)函數(shù)符號(hào)變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉(zhuǎn)化研究函數(shù),,利用導(dǎo)數(shù)研究單調(diào)性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對(duì)于任意實(shí)數(shù)都成立,所以.此時(shí),則.由,解得.當(dāng)x變化時(shí),與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調(diào)遞減,在上單調(diào)遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個(gè)零點(diǎn)”等價(jià)于“直線與曲線,有且只有兩個(gè)公共點(diǎn)”.對(duì)函數(shù)求導(dǎo),得.由,解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度寵物用品銷售及養(yǎng)護(hù)服務(wù)外包協(xié)議4篇
- 2025年度廠房租賃合同配套基礎(chǔ)設(shè)施完善協(xié)議4篇
- 旅游部門半年回顧
- 專用借款協(xié)議:2024年版詳盡協(xié)議版A版
- 2025年度智能家居產(chǎn)品定制生產(chǎn)合同范本4篇
- 二零二四三方國(guó)際貿(mào)易融資借款協(xié)議2篇
- 2025年度拆除項(xiàng)目環(huán)保驗(yàn)收合同模板4篇
- 二手房交易代簽合同范本2024年版版
- 個(gè)性化服務(wù)型酒店房間租賃協(xié)議版A版
- 二零二五版船艇交易環(huán)保與安全協(xié)議3篇
- SH/T 3046-2024 石油化工立式圓筒形鋼制焊接儲(chǔ)罐設(shè)計(jì)規(guī)范(正式版)
- 2024年??谑羞x調(diào)生考試(行政職業(yè)能力測(cè)驗(yàn))綜合能力測(cè)試題及答案1套
- 六年級(jí)數(shù)學(xué)質(zhì)量分析及改進(jìn)措施
- 一年級(jí)下冊(cè)數(shù)學(xué)口算題卡打印
- 真人cs基于信號(hào)發(fā)射的激光武器設(shè)計(jì)
- 【閱讀提升】部編版語(yǔ)文五年級(jí)下冊(cè)第三單元閱讀要素解析 類文閱讀課外閱讀過(guò)關(guān)(含答案)
- 四年級(jí)上冊(cè)遞等式計(jì)算練習(xí)200題及答案
- 法院后勤部門述職報(bào)告
- 2024年國(guó)信證券招聘筆試參考題庫(kù)附帶答案詳解
- 道醫(yī)館可行性報(bào)告
- 仙家送錢表文-文字打印版
評(píng)論
0/150
提交評(píng)論