2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年湖北省孝感市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

3.設(shè)平面則平面π1與π2的關(guān)系為().A.A.平行但不重合B.重合C.垂直D.既不平行,也不垂直

4.

A.

B.

C.

D.

5.設(shè)f(x)在點(diǎn)x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點(diǎn)x0必定可導(dǎo)B.f(x)在點(diǎn)x0必定不可導(dǎo)C.必定存在D.可能不存在

6.A.A.

B.

C.

D.

7.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

8.

9.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)

10.A.A.0B.1/2C.1D.2

11.()。A.e-6

B.e-2

C.e3

D.e6

12.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

13.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

14.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定

15.

A.僅有水平漸近線

B.既有水平漸近線,又有鉛直漸近線

C.僅有鉛直漸近線

D.既無(wú)水平漸近線,又無(wú)鉛直漸近線

16.

17.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

18.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

19.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面

20.方程x2+y2-z2=0表示的二次曲面是()。

A.球面B.旋轉(zhuǎn)拋物面C.圓柱面D.圓錐面

二、填空題(20題)21.

22.

23.

24.微分方程y+y=sinx的一個(gè)特解具有形式為

25.若當(dāng)x→0時(shí),2x2與為等價(jià)無(wú)窮小,則a=______.

26.

27.微分方程y''+6y'+13y=0的通解為______.

28.設(shè)y=cosx,則y"=________。

29.

30.

31.

32.

33.

34.

35.

36.

37.∫e-3xdx=__________。

38.

39.

40.

三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

42.將f(x)=e-2X展開為x的冪級(jí)數(shù).

43.

44.

45.

46.求微分方程的通解.

47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

49.求曲線在點(diǎn)(1,3)處的切線方程.

50.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

51.

52.

53.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

54.

55.證明:

56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

57.求微分方程y"-4y'+4y=e-2x的通解.

58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

60.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

四、解答題(10題)61.

62.

63.

64.求

65.

66.

67.

68.

69.(本題滿分8分)

70.

五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.設(shè)平面薄片的方程可以表示為x2+y2≤R2,x≥0,薄片上點(diǎn)(x,y)處的密度,求該薄片的質(zhì)量M.

參考答案

1.D解析:

2.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

3.C本題考查的知識(shí)點(diǎn)為兩平面的位置關(guān)系.

由于平面π1,π2的法向量分別為

可知n1⊥n2,從而π1⊥π2.應(yīng)選C.

4.C

5.C本題考查的知識(shí)點(diǎn)為極限、連續(xù)與可導(dǎo)性的關(guān)系.

函數(shù)f(x)在點(diǎn)x0可導(dǎo),則f(x)在點(diǎn)x0必連續(xù).

函數(shù)f(x)在點(diǎn)x0連續(xù),則必定存在.

函數(shù)f(x)在點(diǎn)x0連續(xù),f(x)在點(diǎn)x0不一定可導(dǎo).

函數(shù)f(x)在點(diǎn)x0不連續(xù),則f(x)在點(diǎn)x0必定不可導(dǎo).

這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.

6.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

7.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

8.A

9.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

10.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念.

11.A

12.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

13.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

14.C

15.A

16.C

17.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

18.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域?yàn)?-∞,+∞)。

當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

19.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.

20.D因方程可化為,z2=x2+y2,由方程可知它表示的是圓錐面.

21.

22.2

23.1/6

24.

25.6;本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

當(dāng)于當(dāng)x→0時(shí),2x2與為等價(jià)無(wú)窮小,因此

可知a=6.

26.

解析:本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

27.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).

28.-cosx

29.

30.4π本題考查了二重積分的知識(shí)點(diǎn)。

31.(-∞,+∞).

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.

32.

33.

34.

35.

36.

37.-(1/3)e-3x+C

38.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

39.

40.(00)41.函數(shù)的定義域?yàn)?/p>

注意

42.

43.

44.由一階線性微分方程通解公式有

45.

46.

47.

48.由等價(jià)無(wú)窮小量的定義可知49.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

50.

51.

52.

53.

54.

55.

56.

列表:

說(shuō)明

57.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

58.

59.由二重積分物理意義知

60.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

61.

62.

63.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論