版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022年黑龍江省齊齊哈爾市普通高校對口單招高等數(shù)學一自考測試卷(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.若,則下列命題中正確的有()。A.
B.
C.
D.
2.若x0為f(x)的極值點,則().A.A.f(x0)必定存在,且f(x0)=0
B.f(x0)必定存在,但f(x0)不-定等于零
C.f(x0)不存在或f(x0)=0
D.f(x0)必定不存在
3.設y=cosx,則y''=()A.sinxB.cosxC.-cosxD.-sinx
4.輥軸支座(又稱滾動支座)屬于()。
A.柔索約束B.光滑面約束C.光滑圓柱鉸鏈約束D.連桿約束
5.個人試圖在組織或社會的權威之外建立道德準則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
6.
7.設函數(shù)f(x)=arcsinx,則f'(x)等于().
A.-sinx
B.cosx
C.
D.
8.當α<x<b時,f'(x)<0,f'(x)>0。則在區(qū)間(α,b)內(nèi)曲線段y=f(x)的圖形A.A.沿x軸正向下降且為凹B.沿x軸正向下降且為凸C.沿x軸正向上升且為凹D.沿x軸正向上升且為凸
9.
10.當x一0時,與3x2+2x3等價的無窮小量是().
A.2x3
B.3x2
C.x2
D.x3
11.在企業(yè)中,財務主管與財會人員之間的職權關系是()
A.直線職權關系B.參謀職權關系C.既是直線職權關系又是參謀職權關系D.沒有關系12.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
13.
14.
A.
B.
C.
D.
15.A.有一個拐點B.有三個拐點C.有兩個拐點D.無拐點
16.
17.設y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
18.若x0為f(x)的極值點,則().A.A.f'(x0)必定存在,且f'(x0)=0
B.f'(x0)必定存在,但f'(x0)不一定等于零
C.f'(x0)不存在或f'(x0)=0
D.f'(x0)必定不存在
19.下列關于動載荷的敘述不正確的一項是()。
A.動載荷和靜載荷的本質(zhì)區(qū)別是前者構件內(nèi)各點的加速度必須考慮,而后者可忽略不計
B.勻速直線運動時的動荷因數(shù)為
C.自由落體沖擊時的動荷因數(shù)為
D.增大靜變形是減小沖擊載荷的主要途徑
20.
二、填空題(20題)21.過點M0(1,2,-1)且與平面x-y+3z+1=0垂直的直線方程為_________。
22.
23.
24.
25.
26.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。27.設y=sin2x,則y'______.28.過原點且與直線垂直的平面方程為______.
29.
30.
31.
32.二元函數(shù)z=x2+3xy+y2+2x,則=________。33.34.設區(qū)域D由y軸,y=x,y=1所圍成,則.
35.微分方程y'=ex的通解是________。
36.37.38.
39.
40.設sinx為f(x)的原函數(shù),則f(x)=________。三、計算題(20題)41.
42.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
43.求微分方程y"-4y'+4y=e-2x的通解.
44.將f(x)=e-2X展開為x的冪級數(shù).45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.求微分方程的通解.47.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.48.證明:49.
50.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
51.
52.53.54.55.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
56.
57.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.59.當x一0時f(x)與sin2x是等價無窮小量,則60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.62.63.64.求,其中區(qū)域D是由曲線y=1+x2與y=0,x=0,x=1所圍成.65.設F(x)為f(x)的一個原函數(shù),且f(x)=xlnx,求F(x).
66.
67.
68.求曲線y=x2、直線y=2-x與x軸所圍成的平面圖形的面積A及該圖形繞y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vy。
69.
70.五、高等數(shù)學(0題)71.已知∫f(ex)dx=e2x,則f(x)=________。
六、解答題(0題)72.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
參考答案
1.B本題考查的知識點為級數(shù)收斂性的定義。
2.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導,如y=|x|,在點x0=0處f(x)不可導,但是點x0=0為f(x)=|x|的極值點.
(2)f(x)在點x0可導,則由極值的必要條件可知,必定有f(x0)=0.
從題目的選項可知應選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導,且x0為f(x)的極值點,則必有f(x0)=0”認為是極值的充分必要條件.
3.Cy=cosx,y'=-sinx,y''=-cosx.
4.C
5.C解析:處于原則層次的個人試圖在組織或社會的權威之外建立道德準則。
6.B
7.C解析:本題考查的知識點為基本導數(shù)公式.
可知應選C.
8.A由于在(α,b)內(nèi)f'(x)<0,可知f(x)單調(diào)減少。由于f"(x)>0,
可知曲線y=f'(x)在(α,b)內(nèi)為凹,因此選A。
9.A
10.B由于當x一0時,3x2為x的二階無窮小量,2x3為戈的三階無窮小量.因此,3x2+2x3為x的二階無窮小量.又由,可知應選B.
11.A解析:直線職權是指管理者直接指導下屬工作的職權。財務主管與財會人員之間是直線職權關系。
12.D本題考查的知識點為可變限積分求導。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
13.A
14.D
故選D.
15.D本題考查了曲線的拐點的知識點
16.C
17.D由于Y=lnx,可得知,因此選D.
18.C本題考查的知識點為函數(shù)極值點的性質(zhì).
若x0為函數(shù)y=f(x)的極值點,則可能出現(xiàn)兩種情形:
(1)f(x)在點x0處不可導,如y=|x|,在點x0=0處f(x)不可導,但是點x0=0為f(a)=|x|的極值點.
(2)f(x)在點x0可導,則由極值的必要條件可知,必定有f'(x0)=0.
從題目的選項可知應選C.
本題常見的錯誤是選A.其原因是考生將極值的必要條件:“若f(x)在點x0可導,且x0為f(x)的極值點,則必有f'(x0)=0”認為是極值的充分必要條件.
19.C
20.D解析:
21.
22.
解析:
23.0
24.
25.(e-1)226.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx27.2sinxcosx本題考查的知識點為復合函數(shù)導數(shù)運算.
28.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
29.
30.4π
31.[-11)32.因為z=x2+3xy+y2+2x,33.ln(1+x)+C本題考查的知識點為換元積分法.
34.1/2本題考查的知識點為計算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
35.v=ex+C
36.yf''(xy)+f'(x+y)+yf''(x+y)37.e;本題考查的知識點為極限的運算.
注意:可以變形,化為形式的極限.但所給極限通??梢韵茸冃危?/p>
38.
39.1/π40.本題考查的知識點為原函數(shù)的概念。
由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。
41.
42.由二重積分物理意義知
43.解:原方程對應的齊次方程為y"-4y'+4y=0,
44.
45.
46.
47.
列表:
說明
48.
49.由一階線性微分方程通解公式有
50.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
51.
則
52.
53.
54.
55.
56.57.函數(shù)的定義域為
注意
58.
59.由等價無窮小量的定義可知60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.
63.64.積分區(qū)域D如圖1-4所示。D可以表示為0≤x≤1,0≤y≤1+x2本題考查的知識點為計算二重積分,選擇積分次序。如果將二重積分化為先對x后對y的積分,將變得復雜,因此考生應該學會選擇合適的積分次序。65.由題設可得知本題考查的知識點為兩個:原函數(shù)的概念和分部積分法.
66.本題考查的知識點為定積分的幾何應用:利用定積分表示平面圖形的面積;利用定積分求繞坐標軸旋轉(zhuǎn)而成旋轉(zhuǎn)體體積.
所給平面圖形如圖4—1中陰影部分所示,
注這是常見的考試題型,考生應該熟練掌握.
67.
68.
69.
70.
71.∫f(ex)dx=e2x兩邊對x求導(∫f(ex)dx)"=(e2x)"∴f(ex)=2e2x一2(ex)2∴f(x)一2x2
∴f"(x)=4x∫f(ex)dx=e2x,兩邊對x求導(∫f(ex)dx)"=(e2x)"∴f(ex)=2e2x一2(ex)2∴f(x)一2x2
∴f"(x)=4x72.由于直線2x-6y+1=0的斜率k=1/3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防器材智能化改造升級服務合同2篇
- 2024租賃合同簽訂程序及條件
- 2025年拓展訓練合同范本大全:企業(yè)團隊凝聚力提升計劃3篇
- 二零二四年度2024年三人健身產(chǎn)業(yè)合作合同6篇
- 2025年洗車場車輛停放管理及承包合同3篇
- 2025版航空航天專用鋁合金采購合同書4篇
- 二零二四年云服務器租賃與智能運維合同3篇
- 個人汽車租賃合同樣本 2024年版版B版
- 2025年度臨時臨時設施租賃合同標準范本4篇
- 2025年無償使用政府辦公樓場地舉辦會議合同范本3篇
- 非誠不找小品臺詞
- 2024年3月江蘇省考公務員面試題(B類)及參考答案
- 患者信息保密法律法規(guī)解讀
- 老年人護理風險防控PPT
- 充電樁采購安裝投標方案(技術方案)
- 醫(yī)院科室考勤表
- 鍍膜員工述職報告
- 春節(jié)期間化工企業(yè)安全生產(chǎn)注意安全生產(chǎn)
- 保險行業(yè)加強清廉文化建設
- Hive數(shù)據(jù)倉庫技術與應用
- 數(shù)字的秘密生活:最有趣的50個數(shù)學故事
評論
0/150
提交評論