版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(50題)1.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
2.A.3x2+C
B.
C.x3+C
D.
3.A.A.1B.2C.1/2D.-1
4.
A.arcsinb-arcsina
B.
C.arcsinx
D.0
5.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。
A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件
6.下列關(guān)系正確的是()。A.
B.
C.
D.
7.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
8.
9.
10.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小
11.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面
12.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。
A.軸線為直線的桿稱(chēng)為直桿B.軸線為曲線的桿稱(chēng)為曲桿C.等截面的直桿稱(chēng)為等直桿D.橫截面大小不等的桿稱(chēng)為截面桿
13.A.0
B.1
C.e
D.e2
14.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定
15.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)
16.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
17.
18.A.A.-(1/2)B.1/2C.-1D.2
19.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
20.
21.A.
B.
C.
D.
22.
23.()A.A.1/2B.1C.2D.e
24.設(shè)y=2-x,則y'等于()。A.2-xx
B.-2-x
C.2-xln2
D.-2-xln2
25.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合
26.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
27.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
28.
29.A.A.
B.B.
C.C.
D.D.
30.
31.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
32.
33.
A.1
B.
C.0
D.
34.
35.
36.
37.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
38.
39.等于()。A.-1B.-1/2C.1/2D.140.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)
B.
C.0
D.f(a)-f(-a)
41.
42.
43.
44.
45.
46.
47.下列關(guān)系正確的是()。A.
B.
C.
D.
48.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小
49.
50.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。
A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt
B.小環(huán)M的速度為
C.小環(huán)M的切向加速度為0
D.小環(huán)M的法向加速度為2Rω2
二、填空題(20題)51.
52.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。
53.________。
54.
55.
56.
57.58.設(shè),則y'=______。59.60.
61.
62.
63.
64.
65.
66.
67.
68.設(shè)y=sin(2+x),則dy=.
69.
70.三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.
73.求微分方程y"-4y'+4y=e-2x的通解.
74.
75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.
77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
78.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).79.80.81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.83.
84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.求微分方程的通解.
86.
87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
88.證明:89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.
92.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求
93.
94.
95.
96.
97.設(shè)函數(shù)f(x)=2x+In(3x+2),求f''(0).
98.
99.100.計(jì)算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.五、高等數(shù)學(xué)(0題)101.求極限
六、解答題(0題)102.計(jì)算
參考答案
1.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
2.B
3.C
4.D
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
故應(yīng)選D.
5.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件
6.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。
7.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。
8.D解析:
9.C
10.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。
11.B
12.D
13.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.
14.C
15.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.
16.B
17.A
18.A
19.D解析:
20.B解析:
21.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒(méi)有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為
22.C
23.C
24.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則
不要丟項(xiàng)。
25.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
26.A
27.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。
28.B
29.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).
30.A解析:
31.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性.
由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.
32.C
33.B
34.A
35.D
36.A
37.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
38.C
39.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。
故應(yīng)選C。
40.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性.
由定積分的對(duì)稱(chēng)性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則
可知應(yīng)選C.
41.A解析:
42.C
43.B
44.C解析:
45.C
46.A
47.B由不定積分的性質(zhì)可知,故選B.
48.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.
49.B
50.D
51.5/2
52.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。
53.
54.
55.
56.
57.解析:58.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。
59.60.0.
本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).
積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)為奇函數(shù),因此
61.-2-2解析:
62.
63.
64.y=2x+1
65.-5-5解析:
66.
本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
67.1/668.cos(2+x)dx
這類(lèi)問(wèn)題通常有兩種解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分運(yùn)算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
69.-2-2解析:70.(-∞,+∞).
本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.
若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).
若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.
71.由等價(jià)無(wú)窮小量的定義可知
72.
73.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
74.
75.
76.由一階線性微分方程通解公式有
77.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
78.
79.
80.
81.
列表:
說(shuō)明
82.由二重積分物理意義知
8
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 居家養(yǎng)老服務(wù)合同3篇
- 教育培訓(xùn)校長(zhǎng)派遣服務(wù)合同3篇
- 房屋買(mǎi)賣(mài)合同范本版僅供3篇
- 施工保溫合同樣本3篇
- 數(shù)碼攝影器材購(gòu)銷(xiāo)合同范本3篇
- 數(shù)據(jù)服務(wù)合同深入數(shù)據(jù)采集3篇
- 房屋買(mǎi)賣(mài)定金合同書(shū)格式3篇
- 文明交通我是小學(xué)生3篇
- 擋水墻工程承包協(xié)議樣本3篇
- 房屋買(mǎi)賣(mài)合同解除訴訟的法律依據(jù)3篇
- 北斗創(chuàng)新設(shè)計(jì)導(dǎo)航-知到答案、智慧樹(shù)答案
- 【韓國(guó)三星在中國(guó)的跨文化管理探析-以上海子公司為例5800字】
- 新學(xué)位法專(zhuān)題講座課件
- 墜積性肺炎治療新進(jìn)展
- 心身疾病的心理與康復(fù)治療
- 2024年02月四川省省直機(jī)關(guān)2024年度公開(kāi)遴選和公開(kāi)選調(diào)公務(wù)員筆試參考題庫(kù)附帶答案詳解
- 壯醫(yī)藥水蛭療法
- 2024年型材切割機(jī)市場(chǎng)需求分析報(bào)告
- 【生物】選擇性必修二知識(shí)總結(jié)課件 2023-2024學(xué)年高二上學(xué)期生物人教版選擇性必修2
- 2023-2024學(xué)年北京市朝陽(yáng)區(qū)八年級(jí)上學(xué)期期末考數(shù)學(xué)試卷含答案
- 農(nóng)信社案防培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論