2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第1頁(yè)
2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第2頁(yè)
2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第3頁(yè)
2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第4頁(yè)
2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年吉林省四平市成考專(zhuān)升本高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)

2.A.3x2+C

B.

C.x3+C

D.

3.A.A.1B.2C.1/2D.-1

4.

A.arcsinb-arcsina

B.

C.arcsinx

D.0

5.f(x)在[a,b]上可導(dǎo)是f(x)在[a,b]上可積的()。

A.充要條件B.充分條件C.必要條件D.無(wú)關(guān)條件

6.下列關(guān)系正確的是()。A.

B.

C.

D.

7.A.e-1dx

B.-e-1dx

C.(1+e-1)dx

D.(1-e-1)dx

8.

9.

10.設(shè)y=f(x)為可導(dǎo)函數(shù),則當(dāng)△x→0時(shí),△y-dy為△x的A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.低階無(wú)窮小

11.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面

12.下列關(guān)于構(gòu)建的幾何形狀說(shuō)法不正確的是()。

A.軸線為直線的桿稱(chēng)為直桿B.軸線為曲線的桿稱(chēng)為曲桿C.等截面的直桿稱(chēng)為等直桿D.橫截面大小不等的桿稱(chēng)為截面桿

13.A.0

B.1

C.e

D.e2

14.()A.A.發(fā)散B.條件收斂C.絕對(duì)收斂D.斂散性不能確定

15.設(shè)k>0,則級(jí)數(shù)為().A.A.條件收斂B.絕對(duì)收斂C.發(fā)散D.收斂性與k有關(guān)

16.

若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解

B.為所給方程的解,但不一定是通解

C.為所給方程的通解

D.不為所給方程的解

17.

18.A.A.-(1/2)B.1/2C.-1D.2

19.當(dāng)x→0時(shí),x是ln(1+x2)的

A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小

20.

21.A.

B.

C.

D.

22.

23.()A.A.1/2B.1C.2D.e

24.設(shè)y=2-x,則y'等于()。A.2-xx

B.-2-x

C.2-xln2

D.-2-xln2

25.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合

26.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)

27.A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

28.

29.A.A.

B.B.

C.C.

D.D.

30.

31.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

32.

33.

A.1

B.

C.0

D.

34.

35.

36.

37.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

38.

39.等于()。A.-1B.-1/2C.1/2D.140.設(shè)f(x)為連續(xù)的奇函數(shù),則等于().A.A.2af(x)

B.

C.0

D.f(a)-f(-a)

41.

42.

43.

44.

45.

46.

47.下列關(guān)系正確的是()。A.

B.

C.

D.

48.當(dāng)a→0時(shí),2x2+3x是x的().A.A.高階無(wú)窮小B.等價(jià)無(wú)窮小C.同階無(wú)窮小,但不是等價(jià)無(wú)窮小D.低階無(wú)窮小

49.

50.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過(guò)小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開(kāi)始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說(shuō)法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

二、填空題(20題)51.

52.已知f(0)=1,f(1)=2,f(1)=3,則∫01xf"(x)dx=________。

53.________。

54.

55.

56.

57.58.設(shè),則y'=______。59.60.

61.

62.

63.

64.

65.

66.

67.

68.設(shè)y=sin(2+x),則dy=.

69.

70.三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則72.

73.求微分方程y"-4y'+4y=e-2x的通解.

74.

75.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.76.

77.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

78.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).79.80.81.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.

84.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.85.求微分方程的通解.

86.

87.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

88.證明:89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.

92.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求

93.

94.

95.

96.

97.設(shè)函數(shù)f(x)=2x+In(3x+2),求f''(0).

98.

99.100.計(jì)算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.五、高等數(shù)學(xué)(0題)101.求極限

六、解答題(0題)102.計(jì)算

參考答案

1.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

2.B

3.C

4.D

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

故應(yīng)選D.

5.B∵可導(dǎo)一定連續(xù),連續(xù)一定可積;反之不一定?!嗫蓪?dǎo)是可積的充分條件

6.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)。

7.D本題考查了函數(shù)的微分的知識(shí)點(diǎn)。

8.D解析:

9.C

10.A由微分的定義可知△y=dy+o(△x),因此當(dāng)△x→0時(shí)△y-dy=o(△x)為△x的高階無(wú)窮小,因此選A。

11.B

12.D

13.B為初等函數(shù),且點(diǎn)x=0在的定義區(qū)間內(nèi),因此,故選B.

14.C

15.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.

由于為萊布尼茨級(jí)數(shù),為條件收斂.而為萊布尼茨級(jí)數(shù)乘以數(shù)-k,可知應(yīng)選A.

16.B

17.A

18.A

19.D解析:

20.B解析:

21.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒(méi)有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為

22.C

23.C

24.D本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo)數(shù)的鏈?zhǔn)椒▌t。由于y=2-xY'=2-x·ln2·(-x)'=-2-xln2.考生易錯(cuò)誤選C,這是求復(fù)合函數(shù)的導(dǎo)數(shù)時(shí)丟掉項(xiàng)而造成的!因此考生應(yīng)熟記:若y=f(u),u=u(x),則

不要丟項(xiàng)。

25.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.

兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.

26.A

27.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

28.B

29.C本題考查了二重積分的積分區(qū)域的表示的知識(shí)點(diǎn).

30.A解析:

31.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性.

由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.

32.C

33.B

34.A

35.D

36.A

37.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

38.C

39.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

40.C本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱(chēng)性.

由定積分的對(duì)稱(chēng)性質(zhì)可知:若f(x)為[-a,a]上的連續(xù)的奇函數(shù),則

可知應(yīng)選C.

41.A解析:

42.C

43.B

44.C解析:

45.C

46.A

47.B由不定積分的性質(zhì)可知,故選B.

48.C本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),2x3+3x是x的同階無(wú)窮小,但不是等價(jià)無(wú)窮小,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無(wú)窮小盧與無(wú)窮小α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

49.B

50.D

51.5/2

52.2由題設(shè)有∫01xf"(x)dx=∫01xf"(x)=xf"(x)|01-|01f"(x)dx=f"(1)-f(x)|01=f"(1)-f(1)+f(0)=3-2+1=2。

53.

54.

55.

56.

57.解析:58.本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算。

59.60.0.

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

積分區(qū)間為對(duì)稱(chēng)區(qū)間,被積函數(shù)為奇函數(shù),因此

61.-2-2解析:

62.

63.

64.y=2x+1

65.-5-5解析:

66.

本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.

67.1/668.cos(2+x)dx

這類(lèi)問(wèn)題通常有兩種解法.

解法1

因此dy=cos(2+x)dx.

解法2利用微分運(yùn)算公式

dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.

69.-2-2解析:70.(-∞,+∞).

本題考查的知識(shí)點(diǎn)為求冪級(jí)數(shù)的收斂區(qū)間.

若ρ=0,則收斂半徑R=+∞,收斂區(qū)間為(-∞,+∞).

若ρ=+∞,則收斂半徑R=0,級(jí)數(shù)僅在點(diǎn)x=0收斂.

71.由等價(jià)無(wú)窮小量的定義可知

72.

73.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

74.

75.

76.由一階線性微分方程通解公式有

77.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

78.

79.

80.

81.

列表:

說(shuō)明

82.由二重積分物理意義知

8

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論