![2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第1頁](http://file4.renrendoc.com/view/216e89b570ca5e63e25df3060758b3e9/216e89b570ca5e63e25df3060758b3e91.gif)
![2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第2頁](http://file4.renrendoc.com/view/216e89b570ca5e63e25df3060758b3e9/216e89b570ca5e63e25df3060758b3e92.gif)
![2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第3頁](http://file4.renrendoc.com/view/216e89b570ca5e63e25df3060758b3e9/216e89b570ca5e63e25df3060758b3e93.gif)
![2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第4頁](http://file4.renrendoc.com/view/216e89b570ca5e63e25df3060758b3e9/216e89b570ca5e63e25df3060758b3e94.gif)
![2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)_第5頁](http://file4.renrendoc.com/view/216e89b570ca5e63e25df3060758b3e9/216e89b570ca5e63e25df3060758b3e95.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023年內(nèi)蒙古自治區(qū)興安盟普通高校對口單招高等數(shù)學(xué)一自考測試卷(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
3.
4.
5.
6.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
7.
8.設(shè)直線,ι:x/0=y/2=z/1=z/1,則直線ιA.A.過原點且平行于x軸B.不過原點但平行于x軸C.過原點且垂直于x軸D.不過原點但垂直于x軸9.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π
10.
11.
12.
13.
14.
15.
16.
17.設(shè)x是f(x)的一個原函數(shù),則f(x)=A.A.x2/2B.2x2
C.1D.C(任意常數(shù))
18.當(dāng)x→0時,x是ln(1+x2)的
A.高階無窮小B.同階但不等價無窮小C.等價無窮小D.低階無窮小19.方程x2+2y2-z2=0表示的曲面是A.A.橢球面B.錐面C.柱面D.平面
20.
二、填空題(20題)21.
22.
23.
24.
25.
26.
27.設(shè)y=sinx2,則dy=______.
28.
29.二元函數(shù)z=xy2+arcsiny2,則=______.
30.微分方程dy+xdx=0的通解為y=__________.
31.
32.
33.
34.設(shè)y=cosx,則y"=________。
35.
36.
37.
38.
39.
40.
三、計算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.42.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.43.證明:44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.求微分方程的通解.
47.
48.將f(x)=e-2X展開為x的冪級數(shù).49.
50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.52.53.求曲線在點(1,3)處的切線方程.54.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則55.
56.57.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
58.
59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.
62.
63.設(shè)z=z(x,y)由x2+y3+2z=1確定,求
64.
65.
66.設(shè)函數(shù)y=ex+arctanx+π2,求dy.
67.
68.69.在第Ⅰ象限內(nèi)的曲線上求一點M(x,y),使過該點的切線被兩坐標(biāo)軸所截線段的長度為最?。?/p>
70.五、高等數(shù)學(xué)(0題)71.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
六、解答題(0題)72.求微分方程y"-y'-2y=ex的通解。
參考答案
1.B解析:
2.C
3.A
4.B
5.D
6.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
7.A解析:
8.C將原點(0,0,0)代入直線方程成等式,可知直線過原點(或由直線方程x/m=y/n=z/p表示過原點的直線得出上述結(jié)論)。直線的方向向量為(0,2,1),又與x軸同方向的單位向量為(1,0,0),且
(0,2,1)*(1,0,0)=0,
可知所給直線與x軸垂直,因此選C。
9.C本題考查的知識點為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
10.A
11.D
12.C
13.C
14.D解析:
15.C解析:
16.A
17.Cx為f(x)的一個原函數(shù),由原函數(shù)定義可知f(x)=x'=1,故選C。
18.D解析:
19.B
20.C解析:
21.1/21/2解析:
22.
23.
解析:
24.
解析:
25.
26.27.2xcosx2dx本題考查的知識點為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.
28.
解析:29.y2
;本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù).
只需將y,arcsiny2認(rèn)作為常數(shù),則
30.
31.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識點。
32.
解析:
33.00解析:
34.-cosx
35.3xln3
36.37.3yx3y-1
38.
解析:
39.(-33)(-3,3)解析:
40.41.函數(shù)的定義域為
注意
42.
43.
44.
45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
46.
47.
48.
49.
則
50.
列表:
說明
51.由二重積分物理意義知
52.
53.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
54.由等價無窮小量的定義可知55.由一階線性微分方程通解公式有
56.
57.
58.
59.
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
61.
62.
63.本題考查的知識點為求二元隱函數(shù)的偏導(dǎo)數(shù).
若z=z(x,y)由方程F(x,y,z)=0確定,求z對x,y的偏導(dǎo)數(shù)通常有兩種方法:
一是利用偏導(dǎo)數(shù)公式,當(dāng)需注意F'x,F(xiàn)'yF'z分別表示F(x,y,z)對x,y,z的偏導(dǎo)數(shù).上面式F(z,y,z)中將z,y,z三者同等對待,各看做是獨立變元.
二是將F(x,y,z)=0兩端關(guān)于x求偏導(dǎo)數(shù),將z=z(x,y)看作為中間變量,可以解出同理將F(x,y,z)=0兩端關(guān)于y求偏導(dǎo)數(shù),將z=z(x,y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度建筑防水工程防水材料研發(fā)與市場調(diào)研合同
- 金華浙江金華市交通工程管理中心招聘編外人員筆試歷年參考題庫附帶答案詳解
- 遼寧2025年渤海大學(xué)招聘高層次人才92人筆試歷年參考題庫附帶答案詳解
- 湖南2025年湖南省生態(tài)環(huán)境廳直屬事業(yè)單位招聘44人筆試歷年參考題庫附帶答案詳解
- DB2103-T 008-2023 消防技術(shù)服務(wù)機構(gòu)從業(yè)規(guī)范
- 沈陽2025年遼寧沈陽遼中區(qū)四家事業(yè)單位面向區(qū)內(nèi)事業(yè)單位遴選18人筆試歷年參考題庫附帶答案詳解
- 常州2025年江蘇常州工學(xué)院高層次人才招聘60人(長期)筆試歷年參考題庫附帶答案詳解
- 2025年中國兩側(cè)擋渣器市場調(diào)查研究報告
- 2025年語音電路項目可行性研究報告
- 2025年耐高溫硅橡膠項目可行性研究報告
- 2025年電力鐵塔市場分析現(xiàn)狀
- GB 12158-2024防止靜電事故通用要求
- 《教育強國建設(shè)規(guī)劃綱要(2024-2035年)》全文
- 山東省濱州市2024-2025學(xué)年高二上學(xué)期期末地理試題( 含答案)
- 體育老師籃球說課
- 化學(xué)-江蘇省蘇州市2024-2025學(xué)年2025屆高三第一學(xué)期學(xué)業(yè)期末質(zhì)量陽光指標(biāo)調(diào)研卷試題和答案
- 蛋雞生產(chǎn)飼養(yǎng)養(yǎng)殖培訓(xùn)課件
- 運用PDCA降低住院患者跌倒-墜床發(fā)生率
- 海底撈員工手冊
- 2024CSCO小細(xì)胞肺癌診療指南解讀
- 立春氣象與生活影響模板
評論
0/150
提交評論