![“應(yīng)用隨機過程”講義一解析_第1頁](http://file4.renrendoc.com/view/ee5f804f258a3d750c0ef273e0f6288d/ee5f804f258a3d750c0ef273e0f6288d1.gif)
![“應(yīng)用隨機過程”講義一解析_第2頁](http://file4.renrendoc.com/view/ee5f804f258a3d750c0ef273e0f6288d/ee5f804f258a3d750c0ef273e0f6288d2.gif)
![“應(yīng)用隨機過程”講義一解析_第3頁](http://file4.renrendoc.com/view/ee5f804f258a3d750c0ef273e0f6288d/ee5f804f258a3d750c0ef273e0f6288d3.gif)
![“應(yīng)用隨機過程”講義一解析_第4頁](http://file4.renrendoc.com/view/ee5f804f258a3d750c0ef273e0f6288d/ee5f804f258a3d750c0ef273e0f6288d4.gif)
![“應(yīng)用隨機過程”講義一解析_第5頁](http://file4.renrendoc.com/view/ee5f804f258a3d750c0ef273e0f6288d/ee5f804f258a3d750c0ef273e0f6288d5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
應(yīng)用隨機過程清華高校數(shù)學(xué)科學(xué)系林元烈主講教材:《應(yīng)用隨機過程》(第三次印刷)林元烈,清華高校出版社2023/1/181應(yīng)用隨機過程講義第一講學(xué)習(xí)要求不僅是駕馭學(xué)問,更重要的是駕馭思想學(xué)會把抽象的概率和實際模型結(jié)合起來2023/1/182應(yīng)用隨機過程講義第一講學(xué)習(xí)重點用隨機變量表示事務(wù)及其分解——基本理論全概率公式——基本技巧數(shù)學(xué)期望和條件數(shù)學(xué)期望——基本概念2023/1/183應(yīng)用隨機過程講義第一講第一講
2023/1/184應(yīng)用隨機過程講義第一講隨機事務(wù)與概率
隨機試驗
2023/1/185應(yīng)用隨機過程講義第一講要點:在相同條件下,試驗可重復(fù)進行;試驗的一切結(jié)果是預(yù)先可以明確的,但每次試驗前無法預(yù)先斷言原委會出現(xiàn)哪個結(jié)果。2023/1/186應(yīng)用隨機過程講義第一講樣本點
對于隨機試驗E,以ω表示它的一個可能出現(xiàn)的試驗結(jié)果,稱ω為E的一個樣本點。
樣本空間
樣本點的全體稱為樣本空間,用Ω表示。Ω={ω}2023/1/187應(yīng)用隨機過程講義第一講隨機事務(wù)粗略地說,樣本空間Ω的子集就是隨機事務(wù),用大寫英文字母A、B、C等來表示。
事務(wù)的關(guān)系與運算
2023/1/188應(yīng)用隨機過程講義第一講2023/1/189應(yīng)用隨機過程講義第一講2023/1/1810應(yīng)用隨機過程講義第一講示性函數(shù)是最簡潔的隨機變量用隨機變量來表示事務(wù)2023/1/1811應(yīng)用隨機過程講義第一講用示性函數(shù)的關(guān)系及運算來表示相關(guān)事務(wù)的關(guān)系及運算2023/1/1812應(yīng)用隨機過程講義第一講公理化定義集類2023/1/1813應(yīng)用隨機過程講義第一講2023/1/1814應(yīng)用隨機過程講義第一講概率2023/1/1815應(yīng)用隨機過程講義第一講2023/1/1816應(yīng)用隨機過程講義第一講2023/1/1817應(yīng)用隨機過程講義第一講概率是滿足非負性;歸一性;可列可加性;的集函數(shù)??蓽y集粗略地說,可以定義長度(面積、體積)的點集即為可測集;反之稱為不行測集。2023/1/1818應(yīng)用隨機過程講義第一講概率的性質(zhì)1.
2.3.有限可加性
2023/1/1819應(yīng)用隨機過程講義第一講4.
5.6.
2023/1/1820應(yīng)用隨機過程講義第一講7.8.可列次可加性9.概率連續(xù)性2023/1/1821應(yīng)用隨機過程講義第一講這部分的具體探討可以參見《隨機數(shù)學(xué)引論》林元烈,清華高校出版社2023/1/1822應(yīng)用隨機過程講義第一講Buffon試驗:最早用隨機試驗的方法求某個未知的數(shù)。測度:滿足非負性、可列可加性的集函數(shù)。2023/1/1823應(yīng)用隨機過程講義第一講2023/1/1824應(yīng)用隨機過程講義第一講事實上,設(shè)集類以上集類和A生成相同的σ-代數(shù),都是上面提到的一維Borelσ-代數(shù),即2023/1/1825應(yīng)用隨機過程講義第一講直觀地說,中包含一切開區(qū)間,閉區(qū)間,半開半閉區(qū)間,半閉半開區(qū)間,單個實數(shù),以及由它們經(jīng)可列次并交運算而得出的集類。2023/1/1826應(yīng)用隨機過程講義第一講2023/1/1827應(yīng)用隨機過程講義第一講
2023/1/1828應(yīng)用隨機過程講義第一講2023/1/1829應(yīng)用隨機過程講義第一講2023/1/1830應(yīng)用隨機過程講義第一講事務(wù)的獨立性2023/1/1831應(yīng)用隨機過程講義第一講
幾個事務(wù)的獨立性2023/1/1832應(yīng)用隨機過程講義第一講2023/1/1833應(yīng)用隨機過程講義第一講2023/1/1834應(yīng)用隨機過程講義第一講2023/1/1835應(yīng)用隨機過程講義第一講比較甲乙兩人的結(jié)果,從以上結(jié)果可以得到什么結(jié)論?2023/1/1836應(yīng)用隨機過程講義第一講機遇偏愛有心人!2023/1/1837應(yīng)用隨機過程講義第一講一次成功的概率只有2%,是典型的小概率事務(wù);但重復(fù)次數(shù)足夠多,如n=400,至少一次成功就是或許率事務(wù)!
2023/1/1838應(yīng)用隨機過程講義第一講只要功夫深,鐵杵磨成針!2023/1/1839應(yīng)用隨機過程講義第一講隨機變量定義說明2023/1/1840應(yīng)用隨機過程講義第一講離散型隨機變量的示性函數(shù)表示法
這說明對于任一d.v.r.,總可以分解為互不交的事務(wù)的示性函數(shù)的迭加。2023/1/1841應(yīng)用隨機過程講義第一講隨機變量等價定義分布函數(shù)2023/1/1842應(yīng)用隨機過程講義第一講連續(xù)型隨機變量的概率密度函數(shù)微元法求概率密度函數(shù)2023/1/1843應(yīng)用隨機過程講義第一講二維隨機變量的分布函數(shù)二維Borel-σ代數(shù)由平面上矩形的全體生成的σ-代數(shù)2023/1/1844應(yīng)用隨機過程講義第一講聯(lián)合密度函數(shù)亦可用微元法求2023/1/1845應(yīng)用隨機過程講義第一講常用隨機變量的分布(列出,期望方差)兩點分布正態(tài)分布二項分布指數(shù)分布Poisson分布勻整分布幾何分布二維正態(tài)分布2023/1/1846應(yīng)用隨機過程講義第一講兩點分布若r.v.X只取1和0兩個值,且則稱r.v.X聽從參數(shù)為p的兩點分布。簡記為:X~B(1,p).即EX=p,DX=p(1-p)2023/1/1847應(yīng)用隨機過程講義第一講EX=np,DX=np(1-p)EX=1/p,DX=(1-p)/p22023/1/1848應(yīng)用隨機過程講義第一講EX=λ,DX=λEX=(a+b)/2,DX=(b-a)2/122023/1/1849應(yīng)用隨機過程講義第一講EX=1/λ,DX=1/λ2EX=μ,DX=σ22023/1/1850應(yīng)用隨機過程講義第一講二維正態(tài)分布的優(yōu)良性質(zhì)
X,Y相互獨立X,Y不相關(guān)2023/1/1851應(yīng)用隨機過程講義第一講隨機變量的數(shù)字特征及條件數(shù)學(xué)期望2023/1/1852應(yīng)用隨機過程講義第一講數(shù)學(xué)期望(復(fù)習(xí))“加權(quán)平均”為了引出一般隨機變量的定義,我們先介紹R-S積分的概念。2023/1/1853應(yīng)用隨機過程講義第一講黎曼-斯蒂爾吉斯積分2023/1/1854應(yīng)用隨機過程講義第一講任分任取求和取極限2023/1/1855應(yīng)用隨機過程講義第一講2023/1/1856應(yīng)用隨機過程講義第一講在定義了R-S積分之后,我們可以將全部隨機變量的數(shù)學(xué)期望形式進行統(tǒng)一。2023/1/1857應(yīng)用隨機過程講義第一講2023/1/1858應(yīng)用隨機過程講義第一講數(shù)學(xué)期望的性質(zhì)(E|Xi|<∞)2023/1/1859應(yīng)用隨機過程講義第一講
交換求和依次2023/1/1860應(yīng)用隨機過程講義第一講同理,對連續(xù)型隨機變量有相像的結(jié)論成立2023/1/1861應(yīng)用隨機過程講義第一講2023/1/1862應(yīng)用隨機過程講義第一講2023/1/1863應(yīng)用隨機過程講義第一講2023/1/1864應(yīng)用隨機過程講義第一講2023/1/1865應(yīng)用隨機過程講義第一講Chebyshev不等式2023/1/1866應(yīng)用隨機過程講義第一講
條件數(shù)學(xué)期望2023/1/1867應(yīng)用隨機過程講義第一講2023/1/1868應(yīng)用隨機過程講義第一講2023/1/1869應(yīng)用隨機過程講義第一講用示性函數(shù)的線性組合表示離散型隨機變量(見前面“隨機變量”部分)2023/1/1870應(yīng)用隨機過程講義第一講例:將概率運算納入求期望運算的范疇2023/1/1871應(yīng)用隨機過程講義第一講理解E(X|Y)是ω的函數(shù),也是Y(ω)的函數(shù),即Y(ω)取值不同,E(X|Y)也取相應(yīng)的值;當Y是離散型隨機變量時,E(X|Y)也是離散型隨機變量。2023/1/1872應(yīng)用隨機過程講義第一講2023/1/1873應(yīng)用隨機過程講義第一講推廣至一般隨機變量2023/1/1874應(yīng)用隨機過程講義第一講將x替換成X2023/1/1875應(yīng)用隨機過程講義第一講求條件數(shù)學(xué)期望的一般步驟先寫出固定條件(如Y=yj)的狀況下X的條件分布律或條件密度函數(shù);依據(jù)條件數(shù)學(xué)期望的定義,通過求和或積分得到條件下的數(shù)學(xué)期望;將條件(Y=yj)替換成一般狀況下的隨機變量(Y)2023/1/1876應(yīng)用隨機過程講義第一講條件數(shù)學(xué)期望的性質(zhì)設(shè)E(Y),E(Xi|Y),E(h(Y)),E{g(X)h(Y)}存在,則(重要!)全期望公式2023/1/1877應(yīng)用隨機過程講義第一講2023/1/1878應(yīng)用隨機過程講義第一講將全概率公式納入全期望公式的范疇2023/1/1879應(yīng)用隨機過程講義第一講重要結(jié)論:E(X|Y)=E(E(X|Y,Z)|Y)=E[E(X|Y)|Y,Z]以示性函數(shù)為例,驗證上面的結(jié)論2023/1/1880應(yīng)用隨機過程講義第一講同理可驗證另一個等號2023/1/1881應(yīng)用隨機過程講義第一講例:2023/1/1882應(yīng)用隨機過程講義第一講由X2和Y3獨立用示性函數(shù)表示X22023/1/1883應(yīng)用隨機過程講義第一講2023/1/1884應(yīng)用隨機過程講義第一講推廣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湘師大版道德與法治九年級下冊3.1《多民族的大家庭》聽課評課記錄
- 教科版道德與法治八年級上冊6.2《公民的責(zé)任》聽課評課記錄
- 魯教版數(shù)學(xué)六年級上冊2.1《0科學(xué)計數(shù)法》聽評課記錄
- 岳麓版歷史七年級上冊第18課《漢代的科技與文化》聽課評課記錄
- 蘇科版數(shù)學(xué)九年級下冊5.1《二次函數(shù)》講聽評課記錄
- 五年級數(shù)學(xué)聽評課記錄表
- 人教版九年級數(shù)學(xué)上冊第二十二章二次函數(shù)《22.2二次函數(shù)與一元二次方程》第1課時聽評課記錄
- 【2022年新課標】部編版七年級上冊道德與法治第六課 交友的智慧 2課時聽課評課記錄
- 韓式餐廳承包經(jīng)營合同范本
- 個人入股分紅協(xié)議書范本
- 中國服裝零售行業(yè)發(fā)展環(huán)境、市場運行格局及前景研究報告-智研咨詢(2025版)
- 臨床提高膿毒性休克患者1h集束化措施落實率PDCA品管圈
- 春節(jié)節(jié)后施工復(fù)工安全培訓(xùn)
- GB/T 3478.1-1995圓柱直齒漸開線花鍵模數(shù)基本齒廓公差
- GB/T 1346-2001水泥標準稠度用水量、凝結(jié)時間、安定性檢驗方法
- FZ/T 25001-2012工業(yè)用毛氈
- 瑞幸咖啡SWOT分析
- DL∕T 1867-2018 電力需求響應(yīng)信息交換規(guī)范
- 小學(xué)生品德發(fā)展水平指標評價體系(小學(xué))
- 水利工程地震應(yīng)急預(yù)案
- 日歷表空白每月打印計劃表
評論
0/150
提交評論