版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第1講平面向量的概念及其線性運(yùn)算知識(shí)梳理1.向量的有關(guān)概念大小
方向
長(zhǎng)度
模
零
1個(gè)單位
相同
相反
平行
方向相同或相反
相等
相同
相等
相反
2.向量的線性運(yùn)算三角形
相同
相反
3.共線向量定理 向量a(a≠0)與b共線的充要條件是存在唯一一個(gè)實(shí)數(shù)λ,使得
.b=λa辨析感悟
[感悟·提升]1.一個(gè)區(qū)別兩個(gè)向量共線與兩條線段共線不同,前者的起點(diǎn)可以不同,而后者必須在同一直線上.同樣,兩個(gè)平行向量與兩條平行直線也是不同的,因?yàn)閮蓚€(gè)平行向量可以移到同一直線上.2.兩個(gè)防范一是兩個(gè)向量共線,則它們的方向相同或相反;如(1);二是注重零向量的特殊性,如(2).考點(diǎn)一平面向量的有關(guān)概念規(guī)律方法
對(duì)于向量的概念應(yīng)注意以下幾條:(1)向量的兩個(gè)特征:有大小和方向,向量既可以用有向線段和字母表示,也可以用坐標(biāo)表示;(2)相等向量不僅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量則未必是相等向量;(3)向量與數(shù)量不同,數(shù)量可以比較大小,向量則不能,但向量的模是非負(fù)實(shí)數(shù),故可以比較大?。居?xùn)練1】設(shè)a0為單位向量,①若a為平面內(nèi)的某個(gè)向量,則
a=|a|a0;②若a與a0平行,則a=|a|a0;③若a與a0平行且|a|=1,則a=a0.上述命題中,假命題的序號(hào)是________. 解析向量是既有大小又有方向的量,a與|a|a0的模相等,但方向不一定相同,故①是假命題;若a與a0平行,則a與a0的方向有兩種情況:一是同向,二是反向,反向時(shí)a=-|a|a0,故②③也是假命題. 答案①②③考點(diǎn)二平面向量的線性運(yùn)算規(guī)律方法
(1)進(jìn)行向量運(yùn)算時(shí),要盡可能地將它們轉(zhuǎn)化到三角形或平行四邊形中,充分利用相等向量、相反向量,三角形的中位線及相似三角形對(duì)應(yīng)邊成比例等性質(zhì),把未知向量用已知向量表示出來.(2)向量的線性運(yùn)算類似于代數(shù)多項(xiàng)式的運(yùn)算,實(shí)數(shù)運(yùn)算中的去括號(hào)、移項(xiàng)、合并同類項(xiàng)、提取公因式等變形手段在線性運(yùn)算中同樣適用.考點(diǎn)三向量共線定理及其應(yīng)用規(guī)律方法
(1)證明三點(diǎn)共線問題,可用向量共線解決,但應(yīng)注意向量共線與三點(diǎn)共線的區(qū)別與聯(lián)系,當(dāng)兩向量共線且有公共點(diǎn)時(shí),才能得出三點(diǎn)共線.(2)向量a,b共線是指存在不全為零的實(shí)數(shù)λ1,λ2,使λ1a+λ2b=0成立,若λ1a+λ2b=0,當(dāng)且僅當(dāng)λ1=λ2=0時(shí)成立,則向量a,b不共線.1.向量的加、減法運(yùn)算,要在所表達(dá)的圖形上多思考,多聯(lián)系相關(guān)的幾何圖形,比如平行四邊形、菱形、三角形等,可多記憶一些有關(guān)的結(jié)論.2.對(duì)于向量共線定理及其等價(jià)定理,關(guān)鍵要理解為位置(共線或不共線)與向量等式之間所建立的對(duì)應(yīng)關(guān)系.要證明三點(diǎn)共線或直線平行都是先探索有關(guān)的向量滿足向量等式b=λa,再結(jié)合條件或圖形有無公共點(diǎn)證明幾何位置.
【典例】(2012·浙江卷改編)設(shè)a,b是兩個(gè)非零向量.對(duì)于結(jié)論:①若|a+b|=|a|-|b|,則a⊥b;②若a⊥b,則|a+b|=|a|-|b|;③若|a+b|=|a|-|b|,則存在實(shí)數(shù)λ,使得
b=λa;④若存在實(shí)數(shù)λ,使得b=λa,則|a+b|=|a|-|b|.正確結(jié)論的序號(hào)是________.方法優(yōu)化3——準(zhǔn)確把握平面向量的概念和運(yùn)算
[反思感悟]部分學(xué)生做錯(cuò)的主要原因是:題中的條件“
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年礦業(yè)公司礦長(zhǎng)聘用合同樣本版B版
- 2023-2024年初級(jí)管理會(huì)計(jì)之專業(yè)知識(shí)綜合卷模擬考試B卷(含答案)
- 2024熱處理技術(shù)培訓(xùn)與咨詢服務(wù)合同3篇
- 2024年連鎖酒店酒水配送合同
- 2024年物流合作臨時(shí)協(xié)議樣本版B版
- 2024年設(shè)計(jì)院工程咨詢服務(wù)合同
- 2024年適用兒童看護(hù)協(xié)議詳細(xì)樣本版B版
- 2024年貨車駕駛員保險(xiǎn)福利合同
- 2025年度污水處理廠污泥處置及綜合利用合同
- 2025年度高速公路服務(wù)區(qū)停車業(yè)務(wù)投資建設(shè)承包合同3篇
- 肉制品生產(chǎn)企業(yè)名錄296家
- 小學(xué)-英語-湘少版-01-Unit1-What-does-she-look-like課件
- 單證管理崗工作總結(jié)與計(jì)劃
- 規(guī)劃設(shè)計(jì)收費(fèi)標(biāo)準(zhǔn)
- 安全安全隱患整改通知單及回復(fù)
- 國有檢驗(yàn)檢測(cè)機(jī)構(gòu)員工激勵(lì)模式探索
- 采購部年終總結(jié)計(jì)劃PPT模板
- CDI-EM60系列變頻調(diào)速器使用說明書
- 【匯總】高二政治選擇性必修三(統(tǒng)編版) 重點(diǎn)知識(shí)點(diǎn)匯總
- 材料表面與界面考試必備
- 骨科重點(diǎn)??剖〖?jí)市級(jí)申報(bào)材料
評(píng)論
0/150
提交評(píng)論