云南省曲靖市重點中學(xué)2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁
云南省曲靖市重點中學(xué)2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁
云南省曲靖市重點中學(xué)2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁
云南省曲靖市重點中學(xué)2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁
云南省曲靖市重點中學(xué)2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余14頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)圖象的大致形狀是()A. B.C. D.2.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請全校名同學(xué)每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.3.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.4.函數(shù)的最大值為,最小正周期為,則有序數(shù)對為()A. B. C. D.5.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.6.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.7.已知定義在上的奇函數(shù)和偶函數(shù)滿足(且),若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.10.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.404011.若,則的值為()A. B. C. D.12.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.14.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預(yù)防教育數(shù)字化網(wǎng)絡(luò)平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學(xué)在這次活動中答對的題數(shù)分別是,則這五位同學(xué)答對題數(shù)的方差是____________.15.在中,內(nèi)角的對邊長分別為,已知,且,則_________.16.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點為、,與直線的交點為,求線段的長.18.(12分)已知函數(shù)有兩個極值點,.(1)求實數(shù)的取值范圍;(2)證明:.19.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.20.(12分)已知,函數(shù)的最小值為1.(1)證明:.(2)若恒成立,求實數(shù)的最大值.21.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.22.(10分)已知函數(shù).(1)若函數(shù)不存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;(2)若函數(shù)的兩個極值點為,,求的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當(dāng),,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.2.D【解析】

由試驗結(jié)果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學(xué)取對都小于的正實數(shù)對,即,對應(yīng)區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點的坐標(biāo),找到試驗全部結(jié)果構(gòu)成的平面圖形,以便求解.3.D【解析】

可過點S作SF∥OE,交AB于點F,并連接CF,從而可得出∠CSF(或補角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點S作SF∥OE,交AB于點F,連接CF,則∠CSF(或補角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計算能力,屬于基礎(chǔ)題.4.B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B5.A【解析】

根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因為內(nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內(nèi)切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.6.C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.7.D【解析】

根據(jù)函數(shù)的奇偶性用方程法求出的解析式,進而求出,再根據(jù)復(fù)合函數(shù)的單調(diào)性,即可求出結(jié)論.【詳解】依題意有,①,②①②得,又因為,所以,在上單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為.故選:D.【點睛】本題考查求函數(shù)的解析式、函數(shù)的性質(zhì),要熟記復(fù)合函數(shù)單調(diào)性判斷方法,屬于中檔題.8.A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9.B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據(jù)重心的性質(zhì),即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質(zhì):或取得最小值③坐標(biāo)法:P點坐標(biāo)是三個頂點坐標(biāo)的平均數(shù).10.D【解析】

計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.【點睛】本題考查了斐波那契數(shù)列,意在考查學(xué)生的計算能力和應(yīng)用能力.11.C【解析】

根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運算能力12.A【解析】

由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當(dāng)時,;當(dāng)時,.又因為不滿足,所以.【點睛】本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14.2【解析】

由這五位同學(xué)答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.15.4【解析】∵∴根據(jù)正弦定理與余弦定理可得:,即∵∴∵∴故答案為416.【解析】

由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標(biāo)方程即可;(2)設(shè),,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標(biāo)方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點睛】本題考查了利用極坐標(biāo)方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.18.(1)(2)證明見解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個極值點可知有兩個不等實根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據(jù)極值點定義可知,,代入不等式化簡變形后可知只需證明;構(gòu)造函數(shù),并求得,進而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進而可得,即可由函數(shù)性質(zhì)得,進而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因為存在兩個極值點,,所以有兩個不等實根.設(shè),所以.①當(dāng)時,,所以在上單調(diào)遞增,至多有一個零點,不符合題意.②當(dāng)時,令得,0減極小值增所以,即.又因為,,所以在區(qū)間和上各有一個零點,符合題意,綜上,實數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因為,不妨設(shè),設(shè),,則,當(dāng)時,,,所以,所以在上是增函數(shù),所以,所以,即.因為,所以,所以.因為,,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點,由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點偏移證明不等式成立的應(yīng)用,是高考的??键c和熱點,屬于難題.19.(1)10;(2).【解析】

(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質(zhì)可得,根據(jù)S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因為在邊上,所以,在和中由余弦定理,得,因為,,,,所以,所以,.所以邊的長為10.(2)由(1)知為直角三角形,所以,.因為是的角平分線,所以.所以,所以.即的面積為.【點睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.20.(1)2;(2)【解析】分析:(1)將轉(zhuǎn)化為分段函數(shù),求函數(shù)的最小值(2)分離參數(shù),利用基本不等式證明即可.詳解:(Ⅰ)證明:,顯然在上單調(diào)遞減,在上單調(diào)遞增,所以的最小值為,即.(Ⅱ)因為恒成立,所以恒成立,當(dāng)且僅當(dāng)時,取得最小值,所以,即實數(shù)的最大值為.點睛:本題主要考查含兩個絕對值的函數(shù)的最值和不等式的應(yīng)用,第二問恒成立問題分離參數(shù),利用基本不等式求解很關(guān)鍵,屬于中檔題.21.另一個特征值為,對應(yīng)的一個特征向量【解析】

根據(jù)特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個特征向量.【詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設(shè)對應(yīng)的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應(yīng)的一個特征向量【點睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎(chǔ)題.22.(1)(2)【解析】分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論