江蘇省南京市南京師大附中2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第1頁
江蘇省南京市南京師大附中2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第2頁
江蘇省南京市南京師大附中2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第3頁
江蘇省南京市南京師大附中2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第4頁
江蘇省南京市南京師大附中2021-2022學(xué)年高考數(shù)學(xué)倒計時模擬卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在等腰梯形中,,,,為的中點,將與分別沿、向上折起,使、重合為點,則三棱錐的外接球的體積是()A. B.C. D.2.小王因上班繁忙,來不及做午飯,所以叫了外賣.假設(shè)小王和外賣小哥都在12:00~12:10之間隨機到達(dá)小王所居住的樓下,則小王在樓下等候外賣小哥的時間不超過5分鐘的概率是()A. B. C. D.3.設(shè)、,數(shù)列滿足,,,則()A.對于任意,都存在實數(shù),使得恒成立B.對于任意,都存在實數(shù),使得恒成立C.對于任意,都存在實數(shù),使得恒成立D.對于任意,都存在實數(shù),使得恒成立4.的展開式中,含項的系數(shù)為()A. B. C. D.5.若復(fù)數(shù)()在復(fù)平面內(nèi)的對應(yīng)點在直線上,則等于()A. B. C. D.6.若復(fù)數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復(fù)數(shù)為 D.為純虛數(shù)7.如圖示,三棱錐的底面是等腰直角三角形,,且,,則與面所成角的正弦值等于()A. B. C. D.8.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.設(shè)α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面10.若是定義域為的奇函數(shù),且,則A.的值域為 B.為周期函數(shù),且6為其一個周期C.的圖像關(guān)于對稱 D.函數(shù)的零點有無窮多個11.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.712.已知為定義在上的偶函數(shù),當(dāng)時,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線C:()的左、右焦點為,,為雙曲線C上一點,且,若線段與雙曲線C交于另一點A,則的面積為______.14.?dāng)?shù)據(jù)的標(biāo)準(zhǔn)差為_____.15.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.16.如果拋物線上一點到準(zhǔn)線的距離是6,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.18.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.19.(12分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63520.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.21.(12分)如圖,在平面直角坐標(biāo)系中,以軸正半軸為始邊的銳角的終邊與單位圓交于點,且點的縱坐標(biāo)是.(1)求的值:(2)若以軸正半軸為始邊的鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)為,求的值.22.(10分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由題意等腰梯形中的三個三角形都是等邊三角形,折疊成的三棱錐是正四面體,易求得其外接球半徑,得球體積.【詳解】由題意等腰梯形中,又,∴,是靠邊三角形,從而可得,∴折疊后三棱錐是棱長為1的正四面體,設(shè)是的中心,則平面,,,外接球球心必在高上,設(shè)外接球半徑為,即,∴,解得,球體積為.故選:A.【點睛】本題考查求球的體積,解題關(guān)鍵是由已知條件確定折疊成的三棱錐是正四面體.2.C【解析】

設(shè)出兩人到達(dá)小王的時間,根據(jù)題意列出不等式組,利用幾何概型計算公式進(jìn)行求解即可.【詳解】設(shè)小王和外賣小哥到達(dá)小王所居住的樓下的時間分別為,以12:00點為開始算起,則有,在平面直角坐標(biāo)系內(nèi),如圖所示:圖中陰影部分表示該不等式組的所表示的平面區(qū)域,所以小王在樓下等候外賣小哥的時間不超過5分鐘的概率為:.故選:C【點睛】本題考查了幾何概型中的面積型公式,考查了不等式組表示的平面區(qū)域,考查了數(shù)學(xué)運算能力.3.D【解析】

取,可排除AB;由蛛網(wǎng)圖可得數(shù)列的單調(diào)情況,進(jìn)而得到要使,只需,由此可得到答案.【詳解】取,,數(shù)列恒單調(diào)遞增,且不存在最大值,故排除AB選項;由蛛網(wǎng)圖可知,存在兩個不動點,且,,因為當(dāng)時,數(shù)列單調(diào)遞增,則;當(dāng)時,數(shù)列單調(diào)遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數(shù)列的綜合運用,考查邏輯推理能力,屬于難題.4.B【解析】

在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.5.C【解析】

由題意得,可求得,再根據(jù)共軛復(fù)數(shù)的定義可得選項.【詳解】由題意得,解得,所以,所以,故選:C.【點睛】本題考查復(fù)數(shù)的幾何表示和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.6.D【解析】

將復(fù)數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復(fù)數(shù)的模長、實部與虛部、共軛復(fù)數(shù)、復(fù)數(shù)的分類的知識,屬于基礎(chǔ)題.7.A【解析】

首先找出與面所成角,根據(jù)所成角所在三角形利用余弦定理求出所成角的余弦值,再根據(jù)同角三角函數(shù)關(guān)系求出所成角的正弦值.【詳解】由題知是等腰直角三角形且,是等邊三角形,設(shè)中點為,連接,,可知,,同時易知,,所以面,故即為與面所成角,有,故.故選:A.【點睛】本題主要考查了空間幾何題中線面夾角的計算,屬于基礎(chǔ)題.8.A【解析】

本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.9.B【解析】

本題考查了空間兩個平面的判定與性質(zhì)及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質(zhì)定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質(zhì)定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.10.D【解析】

運用函數(shù)的奇偶性定義,周期性定義,根據(jù)表達(dá)式判斷即可.【詳解】是定義域為的奇函數(shù),則,,又,,即是以4為周期的函數(shù),,所以函數(shù)的零點有無窮多個;因為,,令,則,即,所以的圖象關(guān)于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數(shù)的性質(zhì),主要是抽象函數(shù)的性質(zhì),運用數(shù)學(xué)式子判斷得出結(jié)論是關(guān)鍵.11.B【解析】

根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.12.D【解析】

判斷,利用函數(shù)的奇偶性代入計算得到答案.【詳解】∵,∴.故選:【點睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對于函數(shù)性質(zhì)的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知得即,,可解得,由在雙曲線C上,代入即可求得雙曲線方程,然后求得直線的方程與雙曲線方程聯(lián)立求得點A坐標(biāo),借助,即可解得所求.【詳解】由已知得,又,,所以,解得或,由在雙曲線C上,所以或,所以或(舍去),因此雙曲線C的方程為.又,所以線段的方程為,與雙曲線C的方程聯(lián)立消去x整理得,所以,,所以點A坐標(biāo)為,所以.【點睛】本題主要考查直線與雙曲線的位置關(guān)系,考查雙曲線方程的求解,考查求三角形面積,考查學(xué)生的計算能力,難度較難.14.【解析】

先計算平均數(shù)再求解方差與標(biāo)準(zhǔn)差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標(biāo)準(zhǔn)差,故答案為:【點睛】本題主要考查了標(biāo)準(zhǔn)差的計算,屬于基礎(chǔ)題.15.(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間16.【解析】

先求出拋物線的準(zhǔn)線方程,然后根據(jù)點到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.【點睛】本小題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)1008【解析】

(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008【點睛】本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.18.(1)(2)【解析】

(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點睛】本題考查正弦定理以及余弦定理的應(yīng)用,三角形的面積公式,也考查計算能力,屬于基礎(chǔ)題.19.(1)無關(guān);(2),.【解析】

(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.030<3.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān).(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知X~B(3,),從而X的分布列為X0123PE(X)=np==.D(X)=np(1-p)=20.(1)證明見解析;(2).【解析】

(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題21.(1)(2)【解析】

(1)依題意,任意角的三角函數(shù)的定義可知,,進(jìn)而求出.在利用余弦的和差公式即可求出.(2)根據(jù)鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)是,得出,進(jìn)而得出,利用正弦的和差公式即可求出,結(jié)合為銳角,為鈍角,即可得出的值.【詳解】解:因為銳角的終邊與單位圓交于點,點的縱坐標(biāo)是,所以由任意角的三角函數(shù)的定義可知,.從而.(1)于是.(2)因為鈍角的終邊與單位圓交于點,且點的橫坐標(biāo)是,所以,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論