版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國夢”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.642.己知,,,則()A. B. C. D.3.已知點(diǎn)(m,8)在冪函數(shù)的圖象上,設(shè),則()A.b<a<c B.a(chǎn)<b<c C.b<c<a D.a(chǎn)<c<b4.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.5.點(diǎn)為棱長是2的正方體的內(nèi)切球球面上的動(dòng)點(diǎn),點(diǎn)為的中點(diǎn),若滿足,則動(dòng)點(diǎn)的軌跡的長度為()A. B. C. D.6.如圖所示的“數(shù)字塔”有以下規(guī)律:每一層最左與最右的數(shù)字均為2,除此之外每個(gè)數(shù)字均為其兩肩的數(shù)字之積,則該“數(shù)字塔”前10層的所有數(shù)字之積最接近()A. B. C. D.7.若實(shí)數(shù)滿足不等式組則的最小值等于()A. B. C. D.8.若θ是第二象限角且sinθ=,則=A. B. C. D.9.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級每周星期一至星期五的每天閱讀半個(gè)小時(shí)中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計(jì)劃共有()A.120種 B.240種 C.480種 D.600種10.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個(gè)頂點(diǎn)都在球Q的球面上,則球Q的半徑為()A. B. C. D.11.已知向量,,,若,則()A. B. C. D.12.已知數(shù)列滿足,且成等比數(shù)列.若的前n項(xiàng)和為,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為__________.14.曲線在處的切線方程是_________.15.函數(shù)在處的切線方程是____________.16.已知是夾角為的兩個(gè)單位向量,若,,則與的夾角為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方形所在平面外一點(diǎn)滿足,其中分別是與的中點(diǎn).(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.18.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點(diǎn),直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點(diǎn)O到直線l的距離為定值.19.(12分)設(shè)函數(shù).(1)若,求函數(shù)的值域;(2)設(shè)為的三個(gè)內(nèi)角,若,求的值;20.(12分)為了實(shí)現(xiàn)中華民族偉大復(fù)興之夢,把我國建設(shè)成為富強(qiáng)民主文明和諧美麗的社會(huì)主義現(xiàn)代化強(qiáng)國,黨和國家為勞動(dòng)者開拓了寬廣的創(chuàng)造性勞動(dòng)的舞臺.借此“東風(fēng)”,某大型現(xiàn)代化農(nóng)場在種植某種大棚有機(jī)無公害的蔬菜時(shí),為創(chuàng)造更大價(jià)值,提高畝產(chǎn)量,積極開展技術(shù)創(chuàng)新活動(dòng).該農(nóng)場采用了延長光照時(shí)間和降低夜間溫度兩種不同方案.為比較兩種方案下產(chǎn)量的區(qū)別,該農(nóng)場選取了40間大棚(每間一畝),分成兩組,每組20間進(jìn)行試點(diǎn).第一組采用延長光照時(shí)間的方案,第二組采用降低夜間溫度的方案.同時(shí)種植該蔬菜一季,得到各間大棚產(chǎn)量數(shù)據(jù)信息如下圖:(1)如果你是該農(nóng)場的負(fù)責(zé)人,在只考慮畝產(chǎn)量的情況下,請根據(jù)圖中的數(shù)據(jù)信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時(shí)間的方案,光照設(shè)備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設(shè)備的每年成本為0.2千元/畝.已知該農(nóng)場共有大棚100間(每間1畝),農(nóng)場種植的該蔬菜每年產(chǎn)出兩次,且該蔬菜市場的收購均價(jià)為1千元/千斤.根據(jù)題中所給數(shù)據(jù),用樣本估計(jì)總體,請計(jì)算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農(nóng)場根據(jù)以往該蔬菜的種植經(jīng)驗(yàn),認(rèn)為一間大棚畝產(chǎn)量超過5.25千斤為增產(chǎn)明顯.在進(jìn)行夜間降溫試點(diǎn)的20間大棚中隨機(jī)抽取3間,記增產(chǎn)明顯的大棚間數(shù)為,求的分布列及期望.21.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對,恒有成立,求實(shí)數(shù)的最小值.22.(10分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.2.B【解析】
先將三個(gè)數(shù)通過指數(shù),對數(shù)運(yùn)算變形,再判斷.【詳解】因?yàn)?,,所以,故選:B.【點(diǎn)睛】本題主要考查指數(shù)、對數(shù)的大小比較,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.3.B【解析】
先利用冪函數(shù)的定義求出m的值,得到冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,再利用冪函數(shù)f(x)的單調(diào)性,即可得到a,b,c的大小關(guān)系.【詳解】由冪函數(shù)的定義可知,m﹣1=1,∴m=2,∴點(diǎn)(2,8)在冪函數(shù)f(x)=xn上,∴2n=8,∴n=3,∴冪函數(shù)解析式為f(x)=x3,在R上單調(diào)遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點(diǎn)睛】本題主要考查了冪函數(shù)的性質(zhì),以及利用函數(shù)的單調(diào)性比較函數(shù)值大小,屬于中檔題.4.A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.5.C【解析】
設(shè)的中點(diǎn)為,利用正方形和正方體的性質(zhì),結(jié)合線面垂直的判定定理可以證明出平面,這樣可以確定動(dòng)點(diǎn)的軌跡,最后求出動(dòng)點(diǎn)的軌跡的長度.【詳解】設(shè)的中點(diǎn)為,連接,因此有,而,而平面,,因此有平面,所以動(dòng)點(diǎn)的軌跡平面與正方體的內(nèi)切球的交線.正方體的棱長為2,所以內(nèi)切球的半徑為,建立如下圖所示的以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系:因此有,設(shè)平面的法向量為,所以有,因此到平面的距離為:,所以截面圓的半徑為:,因此動(dòng)點(diǎn)的軌跡的長度為.故選:C【點(diǎn)睛】本題考查了線面垂直的判定定理的應(yīng)用,考查了立體幾何中軌跡問題,考查了球截面的性質(zhì),考查了空間想象能力和數(shù)學(xué)運(yùn)算能力.6.A【解析】
結(jié)合所給數(shù)字特征,我們可將每層數(shù)字表示成2的指數(shù)的形式,觀察可知,每層指數(shù)的和成等比數(shù)列分布,結(jié)合等比數(shù)列前項(xiàng)和公式和對數(shù)恒等式即可求解【詳解】如圖,將數(shù)字塔中的數(shù)寫成指數(shù)形式,可發(fā)現(xiàn)其指數(shù)恰好構(gòu)成“楊輝三角”,前10層的指數(shù)之和為,所以原數(shù)字塔中前10層所有數(shù)字之積為.故選:A【點(diǎn)睛】本題考查與“楊輝三角”有關(guān)的規(guī)律求解問題,邏輯推理,等比數(shù)列前項(xiàng)和公式應(yīng)用,屬于中檔題7.A【解析】
首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求的最小值.【詳解】解:作出實(shí)數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點(diǎn)時(shí)直線在上截距最小,所以.故選:A.【點(diǎn)睛】本題考查了簡單線性規(guī)劃問題,求目標(biāo)函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.8.B【解析】由θ是第二象限角且sinθ=知:,.所以.9.B【解析】
首先將五天進(jìn)行分組,再對名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:種本題正確選項(xiàng):【點(diǎn)睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問題.10.A【解析】
設(shè)的中點(diǎn)為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點(diǎn)為O,因?yàn)?,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因?yàn)椋?,解?因?yàn)椋?設(shè),易知平面ABC,則.因?yàn)?,所以,即,解?所以球Q的半徑.故選:A【點(diǎn)睛】本題考查球的組合體,考查空間想象能力,考查計(jì)算求解能力,是中檔題11.A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.12.D【解析】
利用等比中項(xiàng)性質(zhì)可得等差數(shù)列的首項(xiàng),進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時(shí),取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時(shí),取到最小值,最小值為.故選:D.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式、等比中項(xiàng)性質(zhì)、等差數(shù)列前項(xiàng)和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意當(dāng)或時(shí)同時(shí)取到最值.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).14.【解析】
利用導(dǎo)數(shù)的運(yùn)算法則求出導(dǎo)函數(shù),再利用導(dǎo)數(shù)的幾何意義即可求解.【詳解】求導(dǎo)得,所以,所以切線方程為故答案為:【點(diǎn)睛】本題考查了基本初等函數(shù)的導(dǎo)數(shù)、導(dǎo)數(shù)的運(yùn)算法則以及導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.15.【解析】
求出和的值,利用點(diǎn)斜式可得出所求切線的方程.【詳解】,則,,.因此,函數(shù)在處的切線方程是,即.故答案為:.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.16.【解析】
依題意可得,再根據(jù)求模,求數(shù)量積,最后根據(jù)夾角公式計(jì)算可得;【詳解】解:因?yàn)槭菉A角為的兩個(gè)單位向量所以,又,所以,,所以,因?yàn)樗?;故答案為:【點(diǎn)睛】本題考查平面向量的數(shù)量積的運(yùn)算律,以及夾角的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,利用向量計(jì)算線面角即可.【詳解】(1)連接,交于點(diǎn),連結(jié).則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應(yīng)用余弦定理,得,于是有,即,從而有平面.以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,于是,,設(shè)平面的法向量為,則,即,解得于是平面的一個(gè)法向量為.設(shè)直線與平面所成角為,因此.【點(diǎn)睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.18.(I)|FP|=2-32x【解析】
(I)直接利用兩點(diǎn)間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點(diǎn)O到直線l的距離為d=m【點(diǎn)睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.19.(1)(2)【解析】
(1)將,利用三角恒等變換轉(zhuǎn)化為:,,再根據(jù)正弦函數(shù)的性質(zhì)求解,(2)根據(jù),得,又為的內(nèi)角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域?yàn)椋唬?)由,得,又為的內(nèi)角,所以,又因?yàn)樵谥?,,所以,所?【點(diǎn)睛】本題主要考查三角恒等變換和三角函數(shù)的性質(zhì),還考查了運(yùn)算求解的能力,屬于中檔題,20.(1)見解析;(2)(i)該農(nóng)場若采用延長光照時(shí)間的方法,預(yù)計(jì)每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤為424千元;(3)分布列見解析,.【解析】
(1)估計(jì)第一組數(shù)據(jù)平均數(shù)和第二組數(shù)據(jù)平均數(shù)來選擇.(2)對于兩種方法,先計(jì)算出每畝平均產(chǎn)量,再算農(nóng)場一年的利潤.(3)估計(jì)頻率分布直方圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,再算出相應(yīng)的概率,寫出分布列,再求期望.【詳解】(1)第一組數(shù)據(jù)平均數(shù)為千斤/畝,第二組數(shù)據(jù)平均數(shù)為千斤/畝,可知第一組方法較好,所以采用延長光照時(shí)間的方法;((2)(i)對于采用延長光照時(shí)間的方法:每畝平均產(chǎn)量為千斤.∴該農(nóng)場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產(chǎn)量為千斤,∴該農(nóng)場一年的利潤為千元.因此,該農(nóng)場若采用延長光照時(shí)間的方法,預(yù)計(jì)每年的利潤為426千元;若采用降低夜間溫度的方法,預(yù)計(jì)每年的利潤為424千元.(3)由圖可知,增產(chǎn)明顯的大棚間數(shù)為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點(diǎn)睛】本題主要考查樣本估計(jì)總體和離散型隨機(jī)變量的分布列,還考查了數(shù)據(jù)處理和運(yùn)算求解的能力,屬于中檔題.21.(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因?yàn)樵谏蠁握{(diào)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 升學(xué)掌舵手模板
- 七夕美食營銷策略
- 基礎(chǔ)設(shè)施采購分包合同(2篇)
- 揭秘科學(xué)實(shí)驗(yàn)
- 2024版專業(yè)建筑工程協(xié)議模板解析
- 建筑工程安全措施費(fèi)合同
- 2024年未經(jīng)登記房產(chǎn)轉(zhuǎn)讓協(xié)議樣式
- 2024版二手房銷售合同范本3篇
- 電子政務(wù)大數(shù)據(jù)平臺建設(shè)合同
- 2024年網(wǎng)絡(luò)安全防護(hù)服務(wù)合同服務(wù)內(nèi)容與責(zé)任劃分
- 土壤侵蝕原理
- 低壓成套開關(guān)設(shè)備出廠檢驗(yàn)報(bào)告
- 扭剪型高強(qiáng)螺栓重量表
- 關(guān)鍵施工技術(shù)、工藝及工程項(xiàng)目實(shí)施的重點(diǎn)、難點(diǎn)和解決方案資料
- 電纜壓降計(jì)算用表格
- 二年級乘除法豎式計(jì)算題
- 第十二章學(xué)術(shù)論文的撰寫與發(fā)表PPT課件
- 淺談境外工程項(xiàng)目勞動(dòng)用工的薪酬管理
- 中石化:化工銷售市場的挑戰(zhàn)和對策
- 金光修持法(含咒訣指印、步驟、利益說明)
- 精華版三副面試問題及參考答案
評論
0/150
提交評論