版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年山西省晉城市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.
2.當(dāng)x→0時(shí),與x等價(jià)的無(wú)窮小量是()
A.
B.ln(1+x)
C.
D.x2(x+1)
3.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
4.
5.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無(wú)定義
6.設(shè)區(qū)域D={(x,y)|-1≤x≤1,0≤y≤2},().A.1B.2C.3D.4
7.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)
B.xy2cos(xy2)
C.2xyeos(xy2)
D.y2cos(xy2)
8.A.A.凹B.凸C.凹凸性不可確定D.單調(diào)減少
9.二次積分等于()A.A.
B.
C.
D.
10.下列關(guān)系式正確的是()A.A.
B.
C.
D.
11.
12.A.A.
B.
C.
D.
13.A.A.-3/2B.3/2C.-2/3D.2/3
14.
15.
16.
17.設(shè)函數(shù)為().A.A.0B.1C.2D.不存在
18.
19.
20.
二、填空題(20題)21.
22.
23.
24.
25.曲線f(x)=x/x+2的鉛直漸近線方程為_(kāi)_________。
26.
27.
28.
29.設(shè)z=tan(xy-x2),則=______.
30.
31.求
32.
33.
34.
35.設(shè)y=ln(x+2),貝y"=________。
36.
37.設(shè)y=f(x)在點(diǎn)x=0處可導(dǎo),且x=0為f(x)的極值點(diǎn),則f(0)=.
38.微分方程dy+xdx=0的通解y=_____.
39.
40.
三、計(jì)算題(20題)41.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
42.證明:
43.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
44.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
46.
47.
48.求曲線在點(diǎn)(1,3)處的切線方程.
49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
50.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
51.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
52.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
53.
54.求微分方程y"-4y'+4y=e-2x的通解.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
56.
57.
58.
59.
60.求微分方程的通解.
四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.設(shè)函數(shù)y=xlnx,求y''.
69.
70.求由曲線y=1-x2在點(diǎn)(1/2,3/4]處的切線與該曲線及x軸所圍圖形的面積A。
五、高等數(shù)學(xué)(0題)71.已知∫f(ex)dx=e2x,則f(x)=________。
六、解答題(0題)72.求∫xsin(x2+1)dx。
參考答案
1.C
2.B?
3.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知
可知應(yīng)選A。
4.B解析:
5.A因?yàn)閒"(x)=故選A。
6.D的值等于區(qū)域D的面積,D為邊長(zhǎng)為2的正方形面積為4,因此選D。
7.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。
8.A本題考查的知識(shí)點(diǎn)為利用二階導(dǎo)數(shù)符號(hào)判定曲線的凹凸性.
9.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
10.C
11.C
12.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.是關(guān)于y的冪函數(shù),因此故應(yīng)選D.
13.A
14.D
15.B
16.D解析:
17.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.
由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.
18.A
19.C
20.D解析:
21.
解析:
22.F(sinx)+C.
本題考查的知識(shí)點(diǎn)為不定積分的換元法.
23.
24.7/5
25.x=-2
26.1
27.
28.
29.
本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).
z=tan(xy-x2),
30.
31.
=0。
32.
33.e2
34.0
35.
36.(02)(0,2)解析:
37.0.
本題考查的知識(shí)點(diǎn)為極值的必要條件.
由于y=f(x)在點(diǎn)x=0可導(dǎo),且x=0為f(x)的極值點(diǎn),由極值的必要條件可知有f(0)=0.
38.
39.
解析:
40.y=1
41.
42.
43.函數(shù)的定義域?yàn)?/p>
注意
44.
45.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
46.
則
47.
48.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
49.
50.由等價(jià)無(wú)窮小量的定義可知
51.由二重積分物理意義知
52.
53.
54.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
55.
列表:
說(shuō)明
56.
57.
58.由一階線性微分方程通解公式有
59.
60.
61.
62.本題考查的知識(shí)點(diǎn)為將函數(shù)展開(kāi)為x的冪級(jí)數(shù).
【解題指導(dǎo)】
將函數(shù)展開(kāi)為x的冪級(jí)數(shù)通常利用間接法.先將f(x)與標(biāo)準(zhǔn)展開(kāi)式中的函數(shù)對(duì)照,以便確定使用相應(yīng)的公式.如果f(x)可以經(jīng)過(guò)恒等變形變?yōu)闃?biāo)準(zhǔn)展開(kāi)式中函數(shù)的和、差形式,則可以先變形.
63.
64.
65.解
66.解法1原式(兩次利用洛必達(dá)法則)解法2原式(利用等價(jià)無(wú)窮小代換)本題考查的知識(shí)點(diǎn)為用洛必達(dá)法則求極限.
由于問(wèn)題為“∞-∞”型極限問(wèn)題,應(yīng)先將求極限的函數(shù)通分,使所求極限化為“”型問(wèn)題.
如果將上式右端直接利用洛必達(dá)法則求之,則運(yùn)算復(fù)雜.注意到使用洛必達(dá)法則求極限時(shí),如果能與等價(jià)無(wú)窮小代換相結(jié)合,則問(wèn)題常能得到簡(jiǎn)化,由于當(dāng)x→0時(shí),sinx~x,因此
從而能簡(jiǎn)化運(yùn)算.
本題考生中常見(jiàn)的錯(cuò)誤為:由于當(dāng)x→0時(shí),sinx~x,因此
將等價(jià)無(wú)窮小代換在加減法運(yùn)算中使用,這是不允許的.
67.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024農(nóng)產(chǎn)品訂購(gòu)合同
- 2024年廣西古建施工承攬合同模板
- 2024年人力資源服務(wù)保密協(xié)議
- 2024年度城市軌道交通安全監(jiān)控系統(tǒng)合同
- 2024年建筑內(nèi)架搭建專業(yè)承包合同
- 2024年度產(chǎn)品研發(fā)與技術(shù)服務(wù)合同
- 2024不能強(qiáng)迫續(xù)訂勞動(dòng)合同
- 2024年度贈(zèng)與合同
- 2024年廢舊物品回收處理協(xié)議
- 2024商鋪?zhàn)赓U合同適用于各類商業(yè)街、購(gòu)物中心店鋪
- 航站樓管理部《機(jī)場(chǎng)使用手冊(cè)》實(shí)施細(xì)則
- 腦卒中基本知識(shí)課件
- 高效溝通與管理技能提升課件
- 消防維保方案 (詳細(xì)完整版)
- 四年級(jí)上冊(cè)英語(yǔ)課件- M3U1 In the school (Period 3 ) 上海牛津版試用版(共15張PPT)
- 檔案館建設(shè)標(biāo)準(zhǔn)
- 高邊坡支護(hù)專家論證方案(附有大量的圖件)
- 蘇教版五年級(jí)上冊(cè)數(shù)學(xué)試題-第一、二單元 測(cè)試卷【含答案】
- 人員定位礦用井口唯一性檢測(cè)系統(tǒng)
- 電力系統(tǒng)數(shù)據(jù)標(biāo)記語(yǔ)言E語(yǔ)言格式規(guī)范CIME
- 歷史紀(jì)年與歷史年代的計(jì)算方法
評(píng)論
0/150
提交評(píng)論