2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第1頁
2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第2頁
2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第3頁
2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第4頁
2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年山西省陽泉市普通高校對口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.設(shè)函數(shù)y=2x+sinx,則y'=

A.1+cosxB.1-cosxC.2+cosxD.2-cosx

2.如圖所示,在半徑為R的鐵環(huán)上套一小環(huán)M,桿AB穿過小環(huán)M并勻速繞A點(diǎn)轉(zhuǎn)動(dòng),已知轉(zhuǎn)角φ=ωt(其中ω為一常數(shù),φ的單位為rad,t的單位為s),開始時(shí)AB桿處于水平位置,則當(dāng)小環(huán)M運(yùn)動(dòng)到圖示位置時(shí)(以MO為坐標(biāo)原點(diǎn),小環(huán)Md運(yùn)動(dòng)方程為正方向建立自然坐標(biāo)軸),下面說法不正確的一項(xiàng)是()。

A.小環(huán)M的運(yùn)動(dòng)方程為s=2Rωt

B.小環(huán)M的速度為

C.小環(huán)M的切向加速度為0

D.小環(huán)M的法向加速度為2Rω2

3.A.

B.

C.

D.

4.f(x)在x=0有二階連續(xù)導(dǎo)數(shù),則f(x)在x=0處()。A.取極小值B.取極大值C.不取極值D.以上都不對

5.

6.A.A.

B.

C.

D.

7.

8.

9.A.A.0B.1C.2D.3

10.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

11.()。A.sinx+ccosx

B.sinx-xcosx

C.xcosx-sinx

D.-(sinx+xcosx)

12.個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()

A.前慣例層次B.慣例層次C.原則層次D.以上都不是

13.

14.設(shè)函數(shù)y=f(x)二階可導(dǎo),且f(x)<0,f(x)<0,又△y=f(x+△x)-f(x),dy=f(x)△x,則當(dāng)△x>0時(shí),有()A.△y>dy>0

B.△<dy<0

C.dy>Ay>0

D.dy<△y<0

15.

16.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.

B.

C.

D.

17.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-218.設(shè)函數(shù)y=ex-2,則dy=()A.e^(x-3)dxB.e^(x-2)dxC.e^(x-1)dxD.e^xdx19.設(shè)∫0xf(t)dt=xsinx,則f(x)=()A.sinx+xcosxB.sinx-xcosxC.xcosx-sinxD.-(sinx+xcosx)

20.

二、填空題(20題)21.

22.23.空間直角坐標(biāo)系中方程x2+y2=9表示的曲線是________。

24.

25.26.27.為使函數(shù)y=arcsin(u+2)與u=|x|-2構(gòu)成復(fù)合函數(shù),則x所屬區(qū)間應(yīng)為__________.

28.

29.

30.

31.32.

33.

34.

35.微分方程y+y=sinx的一個(gè)特解具有形式為

36.

37.

38.

39.40.三、計(jì)算題(20題)41.研究級數(shù)的收斂性(即何時(shí)絕對收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.42.求曲線在點(diǎn)(1,3)處的切線方程.

43.

44.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.45.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.46.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

47.證明:48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則49.

50.

51.

52.求微分方程y"-4y'+4y=e-2x的通解.

53.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

54.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.將f(x)=e-2X展開為x的冪級數(shù).57.求微分方程的通解.58.59.60.

四、解答題(10題)61.

62.63.

64.

65.

66.

67.

68.設(shè)y=x2ex,求y'。

69.

70.

五、高等數(shù)學(xué)(0題)71.

=()。

A.0B.1C.2D.4六、解答題(0題)72.

參考答案

1.D本題考查了一階導(dǎo)數(shù)的知識(shí)點(diǎn)。因?yàn)閥=2x+sinx,則y'=2+cosx.

2.D

3.A

4.B;又∵分母x→0∴x=0是駐點(diǎn);;即f""(0)=一1<0,∴f(x)在x=0處取極大值

5.C

6.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

7.D

8.B

9.B

10.C

11.A

12.C解析:處于原則層次的個(gè)人試圖在組織或社會(huì)的權(quán)威之外建立道德準(zhǔn)則。

13.C

14.B

15.B

16.D

17.A由于

可知應(yīng)選A.

18.B

19.A

20.D

21.

22.

23.以O(shè)z為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。

24.22解析:

25.

26.27.[-1,1

28.2/5

29.

30.-2-2解析:

31.

32.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

33.33解析:

34.1/21/2解析:

35.

36.x+2y-z-2=0

37.|x|

38.039.本題考查的知識(shí)點(diǎn)為換元積分法.

40.

本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

41.

42.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

43.44.由二重積分物理意義知

45.

46.

47.

48.由等價(jià)無窮小量的定義可知

49.

50.

51.

52.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

53.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

54.

列表:

說明

55.函數(shù)的定義域?yàn)?/p>

注意

56.

57.

58.

59.

60.由一階線性微分方程通解公式有

61.

62.

63.

64.65.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.

將方程化為標(biāo)準(zhǔn)形式

求解一階線性微分方程??梢圆捎脙煞N解法:

解法1利用求解公式,必須先將微分方程化為標(biāo)準(zhǔn)形式y(tǒng)+p(x)y=q(x),則

解法2利用常數(shù)變易法.

原方程相應(yīng)的齊次微分方程為

令C=C(x),則y=C(x)x,代入原方程,可得

可得原方程通解為y=x(x+C).

本題中考生出現(xiàn)的較常見的錯(cuò)誤是:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論