版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.個人試圖在組織或社會的權(quán)威之外建立道德準(zhǔn)則是發(fā)生在()
A.前慣例層次B.慣例層次C.原則層次D.以上都不是
3.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1
4.下列等式成立的是()。
A.
B.
C.
D.
5.A.A.
B.B.
C.C.
D.D.
6.
7.二次積分等于()A.A.
B.
C.
D.
8.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)
9.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
10.已知
則
=()。
A.
B.
C.
D.
11.A.0B.1C.2D.-1
12.
13.
14.
15.
A.2x+1B.2xy+1C.x2+1D.2xy
16.當(dāng)x→0時,3x是x的().
A.高階無窮小量B.等價無窮小量C.同階無窮小量,但不是等價無窮小量D.低階無窮小量
17.
18.A.exln2
B.e2xln2
C.ex+ln2
D.e2x+ln2
19.
20.由曲線,直線y=x,x=2所圍面積為
A.
B.
C.
D.
二、填空題(20題)21.22.
23.
24.
25.微分方程dy+xdx=0的通解y=_____.26.27.
28.
29.30.設(shè)z=sin(y+x2),則.31.
32.
33.設(shè)y=cosx,則y"=________。
34.35.冪級數(shù)的收斂半徑為______.36.37.
38.
39.
40.
三、計(jì)算題(20題)41.求曲線在點(diǎn)(1,3)處的切線方程.
42.
43.
44.
45.求微分方程的通解.46.47.證明:48.將f(x)=e-2X展開為x的冪級數(shù).49.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
51.52.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則53.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.54.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
55.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
57.求微分方程y"-4y'+4y=e-2x的通解.
58.
59.
60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.62.求函數(shù)的二階導(dǎo)數(shù)y''63.求
64.求微分方程y"+4y=e2x的通解。
65.
66.計(jì)算,其中D是由y=x,y=2,x=2與x=4圍成.
67.設(shè)z=x2+y/x,求dz。
68.
69.70.五、高等數(shù)學(xué)(0題)71.已知某廠生產(chǎn)x件產(chǎn)品的成本為
問:若使平均成本最小,應(yīng)生產(chǎn)多少件產(chǎn)品?
六、解答題(0題)72.
參考答案
1.B
2.C解析:處于原則層次的個人試圖在組織或社會的權(quán)威之外建立道德準(zhǔn)則。
3.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.
4.C
5.B本題考查了已知積分函數(shù)求原函數(shù)的知識點(diǎn)
6.D
7.A本題考查的知識點(diǎn)為交換二次積分的積分次序.
由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:
0≤x≤1,0≤y≤1-x,
其圖形如圖1-1所示.
交換積分次序,D可以表示為
0≤y≤1,0≤x≤1-y,
因此
可知應(yīng)選A.
8.C本題考查的知識點(diǎn)為判定函數(shù)的單調(diào)性。
y=ln(1+x2)的定義域?yàn)?-∞,+∞)。
當(dāng)x>0時,y'>0,y為單調(diào)增加函數(shù),
當(dāng)x<0時,y'<0,y為單調(diào)減少函數(shù)。
可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。
9.C
10.A
11.C
12.A
13.D
14.B
15.B
16.C本題考查的知識點(diǎn)為無窮小量階的比較.
應(yīng)依定義考察
由此可知,當(dāng)x→0時,3x是x的同階無窮小量,但不是等價無窮小量,故知應(yīng)選C.
本題應(yīng)明確的是:考察當(dāng)x→x0時無窮小量β與無窮小量α的階的關(guān)系時,要判定極限
這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯誤.
17.D
18.B因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=ln2,故f(x)=e2xln2.
19.D
20.B
21.
22.
本題考查的知識點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
23.
24.025.
26.2x+3y.
本題考查的知識點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.
27.
28.x+2y-z-2=0
29.
本題考查的知識點(diǎn)為:參數(shù)方程形式的函數(shù)求導(dǎo).
30.2xcos(y+x2)本題考查的知識點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得
31.1
32.1/π
33.-cosx34.本題考查的知識點(diǎn)為不定積分的換元積分法。35.0本題考查的知識點(diǎn)為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項(xiàng)情形
因此收斂半徑為0.
36.31/16;2本題考查了函數(shù)的最大、最小值的知識點(diǎn).
f'(x)=3ax2-12ax,f'(x)=0,則x=0或x=4,而x=4不在[-1,2]中,故舍去.f''(x)=6ax-12a,f''(0)=-12a,因?yàn)閍>0,所以f"(0)<0,所以x=0是極值點(diǎn).又因f(-1)=-a-6a+b=b-7a,f(0)=b,f(2)=8a-24a+b=b-16a,因?yàn)閍>0,故當(dāng)x=0時,f(x)最大,即b=2;當(dāng)x=2時,f(x)最小.所以b-16a=-29,即16a=2+29=31,故a=31/16.37.由可變上限積分求導(dǎo)公式可知38.F(sinx)+C本題考查的知識點(diǎn)為不定積分的換元法.
由于∫f(x)dx=F(x)+C,令u=sinx,則du=cosxdx,
39.x=-3
40.
解析:41.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
42.43.由一階線性微分方程通解公式有
44.
則
45.
46.
47.
48.
49.
50.
51.
52.由等價無窮小量的定義可知
53.
54.函數(shù)的定義域?yàn)?/p>
注意
55.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
56.
列表:
說明
57.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
58.
59.
60.由二重積分物理意義知
61.
62.
63.
;本題考查的知識
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)業(yè)科技園區(qū)種植項(xiàng)目合作合同
- 大拖拉機(jī)配件購銷合同
- 搭棚施工合同范本
- 委托房地產(chǎn)開發(fā)合同書模板
- 正規(guī)區(qū)域代理合同范本
- 房地產(chǎn)開發(fā)承包合同
- 國際貿(mào)易進(jìn)出口英文合同范本
- 個人房屋裝修合同標(biāo)準(zhǔn)范文
- 公共廁所的管理制度
- 白酒購買合同模板范文
- 天津市河北區(qū)2024-2025學(xué)年八年級上學(xué)期11月期中歷史試題(含答案)
- 小兒高熱驚厥課件
- 陜西省2024年中考語文真題試卷【附答案】
- 河南省鄭州市二七區(qū)2023-2024學(xué)年七年級下學(xué)期期末考試語文試題
- JB-T 8532-2023 脈沖噴吹類袋式除塵器
- 山東省濟(jì)寧市2023年中考數(shù)學(xué)試題(附真題答案)
- 班組建設(shè)工作匯報(bào)
- 供應(yīng)鏈金融與供應(yīng)鏈融資模式
- 工程類工程公司介紹完整x
- 板帶生產(chǎn)工藝熱連軋帶鋼生產(chǎn)
- 輪機(jī)備件的管理(船舶管理課件)
評論
0/150
提交評論