2023屆江蘇省南京市育英外學(xué)校數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2023屆江蘇省南京市育英外學(xué)校數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2023屆江蘇省南京市育英外學(xué)校數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2023屆江蘇省南京市育英外學(xué)校數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2023屆江蘇省南京市育英外學(xué)校數(shù)學(xué)九年級第一學(xué)期期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.拋物線y=(x﹣1)2﹣2的頂點是()A.(1,﹣2) B.(﹣1,2) C.(1,2) D.(﹣1,﹣2)2.在一個晴朗的上午,小麗拿著一塊矩形木板在陽光下做投影實驗,矩形木板在地面上形成的投影不可能是()A. B.C. D.3.方程5x2=6x﹣8化成一元二次方程一般形式后,二次項系數(shù)、一次項系數(shù)、常數(shù)項分別是()A.5、6、﹣8B.5,﹣6,﹣8C.5,﹣6,8D.6,5,﹣84.如圖,,是四邊形的對角線,點,分別是,的中點,點,分別是,的中點,連接,,,,要使四邊形為正方形,則需添加的條件是()A., B.,C., D.,5.下列關(guān)于一元二次方程(,是不為的常數(shù))的根的情況判斷正確的是()A.方程有兩個相等的實數(shù)根 B.方程有兩個不相等的實數(shù)根C.方程沒有實數(shù)根 D.方程有一個實數(shù)根6.如圖,拋物線與軸交于點,其對稱軸為直線,結(jié)合圖象分析下列結(jié)論:①;②;③當(dāng)時,隨的增大而增大;④一元二次方程的兩根分別為,;⑤;⑥若,為方程的兩個根,則且,其中正確的結(jié)論有()A.個 B.個 C.個 D.個7.將拋物線y=3x2﹣3向右平移3個單位長度,得到新拋物線的表達(dá)式為()A.y=3(x﹣3)2﹣3 B.y=3x2 C.y=3(x+3)2﹣3 D.y=3x2﹣68.如圖,已知⊙O是等腰Rt△ABC的外接圓,點D是上一點,BD交AC于點E,若BC=4,AD=,則AE的長是()A.1 B.1.2 C.2 D.39.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,連接AC,OC,OD,若∠A=20°,則∠COD的度數(shù)為()A.40° B.60° C.80° D.100°10.反比例函數(shù)的圖像經(jīng)過點,,則下列關(guān)系正確的是()A. B. C. D.不能確定11.如圖,△ABC的頂點都在方格紙的格點上,那么的值為()A. B. C. D.12.如圖,Rt△ABC中,∠C=90°,AC=3,BC=1.分別以AB、AC、BC為邊在AB的同側(cè)作正方形ABEF、ACPQ、BCMN,四塊陰影部分的面積分別為S1、S2、S3、S1.則S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.12二、填空題(每題4分,共24分)13.兩個函數(shù)和(abc≠0)的圖象如圖所示,請直接寫出關(guān)于x的不等式的解集_______________.14.已知是一元二次方程的一個解,則的值是__________.15.已知在反比例函數(shù)圖象的任一分支上,都隨的增大而增大,則的取值范圍是______.16.如圖,已知反比例函數(shù)的圖象經(jīng)過斜邊的中點,與直角邊相交于點.若的面積為8,則的值為________.17.如圖,已知直線y=﹣x+2分別與x軸,y軸交于A,B兩點,與雙曲線y=交于E,F(xiàn)兩點,若AB=2EF,則k的值是_____.18.如圖,在A時測得某樹的影長為4米,在B時測得該樹的影長為9米,若兩次日照的光線互相垂直,則該樹的高度為___________米.三、解答題(共78分)19.(8分)如圖,已知,直線垂直平分交于,與邊交于,連接,過點作平行于交于點,連.(1)求證:;(2)求證:四邊形是菱形;(3)若,求菱形的面積.20.(8分)先化簡,再求值.,請從一元二次方程x2+2x-3=0的兩個根中選擇一個你喜歡的求值.21.(8分)(1)計算:;(2)解方程.22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標(biāo)分別為B(3,0),C(0,3),點M是拋物線的頂點.(1)求二次函數(shù)的關(guān)系式;(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,①求S與m的函數(shù)關(guān)系式,寫出自變量m的取值范圍.②當(dāng)S取得最值時,求點P的坐標(biāo);(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標(biāo);如果不存在,請說明理由.23.(10分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于C點,OA=2,OC=6,連接AC和BC.(1)求拋物線的解析式;(2)點D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時,求點D的坐標(biāo);(3)點E是第四象限內(nèi)拋物線上的動點,連接CE和BE.求△BCE面積的最大值及此時點E的坐標(biāo);24.(10分)如圖,點D是AC上一點,BE//AC,AE分別交BD、BC于點F、G,若∠1=∠2,線段BF、FG、FE之間有怎樣的關(guān)系?請說明理由.25.(12分)如圖,⊙O是△ABC的外接圓,PA是⊙O切線,PC交⊙O于點D.(1)求證:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半徑.26.(1)(問題發(fā)現(xiàn))如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.填空:①線段CF與DG的數(shù)量關(guān)系為;②直線CF與DG所夾銳角的度數(shù)為.(2)(拓展探究)如圖②,將正方形AEFG繞點A逆時針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請利用圖②進(jìn)行說明.(3(解決問題)如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點.若點D在直線BC上運動,連接OE,則在點D的運動過程中,線段OE長的最小值為(直接寫出結(jié)果).

參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)頂點式的坐標(biāo)特點直接寫出頂點坐標(biāo)即可解決.【詳解】解:∵y=(x﹣1)2﹣2是拋物線解析式的頂點式,根據(jù)頂點式的坐標(biāo)特點可知,頂點坐標(biāo)為(1,﹣2).故選:A.【點睛】本題考查了頂點式,解決本題的關(guān)鍵是正確理解二次函數(shù)頂點式中頂點坐標(biāo)的表示方法.2、A【解析】解:將矩形木框立起與地面垂直放置時,形成B選項的影子;將矩形木框與地面平行放置時,形成C選項影子;將木框傾斜放置形成D選項影子;根據(jù)同一時刻物高與影長成比例,又因矩形對邊相等,因此投影不可能是A選項中的梯形,因為梯形兩底不相等.故選A.3、C【解析】根據(jù)一元二次方程的一般形式進(jìn)行解答即可.【詳解】5x2=6x﹣8化成一元二次方程一般形式是5x2﹣6x+8=0,它的二次項系數(shù)是5,一次項系數(shù)是﹣6,常數(shù)項是8,故選C.【點睛】本題考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點.在一般形式中ax2叫二次項,bx叫一次項,c是常數(shù)項.其中a,b,c分別叫二次項系數(shù),一次項系數(shù),常數(shù)項.4、A【分析】證出、、、分別是、、、的中位線,得出,,,,證出四邊形為平行四邊形,當(dāng)時,,得出平行四邊形是菱形;當(dāng)時,,即,即可得出菱形是正方形.【詳解】點,分別是,的中點,點,分別是,的中點,、、、分別是、、、的中位線,,,,,四邊形為平行四邊形,當(dāng)時,,平行四邊形是菱形;當(dāng)時,,即,菱形是正方形;故選:.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定以及三角形中位線定理;熟練掌握三角形中位線定理是解題的關(guān)鍵.5、B【分析】首先用表示出根的判別式,結(jié)合非負(fù)數(shù)的性質(zhì)即可作出判斷.【詳解】由題可知二次項系數(shù)為,一次項系數(shù)為,常數(shù)項為,,是不為的常數(shù),,方程有兩個不相等的實數(shù)根,故選:B.【點睛】本題主要考查了根的判別式的知識,解答此題要掌握一元二次方程根的情況與判別式△的關(guān)系:①△>0?方程有兩個不相等的實數(shù)根;②△=0?方程有兩個相等的實數(shù)根③△<0?方程沒有實數(shù)根.6、C【分析】利用二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合圖象依次對各結(jié)論進(jìn)行判斷.【詳解】解:拋物線與軸交于點,其對稱軸為直線拋物線與軸交于點和,且由圖象知:,,故結(jié)論①正確;拋物線與x軸交于點故結(jié)論②正確;當(dāng)時,y隨x的增大而增大;當(dāng)時,隨的增大而減小結(jié)論③錯誤;,拋物線與軸交于點和的兩根是和,即為:,解得,;故結(jié)論④正確;當(dāng)時,故結(jié)論⑤正確;拋物線與軸交于點和,,為方程的兩個根,為方程的兩個根,為函數(shù)與直線的兩個交點的橫坐標(biāo)結(jié)合圖象得:且故結(jié)論⑥成立;故選C.【點睛】本題主要考查二次函數(shù)的性質(zhì),關(guān)鍵在于二次函數(shù)的系數(shù)所表示的意義,以及與一元二次方程的關(guān)系,這是二次函數(shù)的重點知識.7、A【解析】根據(jù)二次函數(shù)的圖象平移規(guī)律:左加右減,上加下減,即可得出.【詳解】拋物線向右平移3個單位,得到的拋物線的解析式是故選A.【點睛】本題主要考查二次函數(shù)的圖象平移規(guī)律:左加右減,上加下減.8、A【解析】利用圓周角性質(zhì)和等腰三角形性質(zhì),確定AB為圓的直徑,利用相似三角形的判定及性質(zhì),確定△ADE和△BCE邊長之間的關(guān)系,利用相似比求出線段AE的長度即可.【詳解】解:∵等腰Rt△ABC,BC=4,∴AB為⊙O的直徑,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比為1:5,設(shè)AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故選A.【點睛】題目考查了圓的基本性質(zhì)、等腰直角三角形性質(zhì)、相似三角形的判定及應(yīng)用等知識點,題目考查知識點較多,是一道綜合性試題,題目難易程度適中,適合課后訓(xùn)練.9、C【分析】利用圓周角與圓心角的關(guān)系得出∠COB=40°,再根據(jù)垂徑定理進(jìn)一步可得出∠DOB=∠COB,最后即可得出答案.【詳解】∵∠A=20°,∴∠COB=2∠A=40°,∵CD⊥AB,OC=OD,∴∠DOB=∠COB=40°,∴∠COD=∠DOB+∠COB=80°.故選:C.【點睛】本題主要考查了圓周角、圓心角與垂徑定理的綜合運用,熟練掌握相關(guān)概念是解題關(guān)鍵.10、B【分析】根據(jù)點的橫坐標(biāo)結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出y1、y2的值,比較后即可得出結(jié)論.【詳解】解:∵反比例函數(shù)的圖象經(jīng)過點,,

∴y1=3,y2=,

∵3>,

∴.

故選:B.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,根據(jù)點的橫坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征求出點的縱坐標(biāo)是解題的關(guān)鍵.11、D【分析】把∠A置于直角三角形中,進(jìn)而求得對邊與斜邊之比即可.【詳解】解:如圖所示,在Rt△ACD中,AD=4,CD=3,∴AC===5∴==.故選D.【點睛】本題考查了銳角三角函數(shù)的定義;合理構(gòu)造直角三角形是解題關(guān)鍵.12、B【解析】本題先根據(jù)正方形的性質(zhì)和等量代換得到判定全等三角形的條件,再根據(jù)全等三角形的判定定理和面積相等的性質(zhì)得到S、S、、與△ABC的關(guān)系,即可表示出圖中陰影部分的面積和.本題的著重點是等量代換和相互轉(zhuǎn)化的思想.【詳解】解:如圖所示,過點F作FG⊥AM交于點G,連接PF.根據(jù)正方形的性質(zhì)可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可證,△KME≌△TPF,△FGK≌△ACT,因為∠QAG=∠AGF=∠AQF=90,所以四邊形AQFG是矩形,則QF//AG,又因為QP//AC,所以點Q、P,F三點共線,故S+S=,S=.因為∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因為∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可證△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本題正確答案為B.【點睛】本題主要考查正方形和全等三角形的判定與性質(zhì).二、填空題(每題4分,共24分)13、或;【分析】由題意可知關(guān)于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,由于反比例函數(shù)的圖象有兩個分支,因此可以分開來考慮.【詳解】解:關(guān)于x的不等式的解集實際上就是一次函數(shù)的值大于反比例函數(shù)的值時自變量x的取值范圍,觀察圖象的交點坐標(biāo)可得:或.【點睛】本題考查一次函數(shù)的圖象和性質(zhì)、反比例函數(shù)的圖象和性質(zhì)以及一次函數(shù)、反比例函數(shù)與一次不等式的關(guān)系,理解不等式與一次函數(shù)和反比例函數(shù)的關(guān)系式解決問題的關(guān)鍵.14、4【分析】把x=-2代入x2+mx+4=0可得關(guān)于m的一元一次方程,解方程即可求出m的值.【詳解】∵是一元二次方程的一個解,∴4-2m+4=0,解得:m=4,故答案為:4【點睛】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.15、【分析】根據(jù)反比例函數(shù)的圖象與性質(zhì)即可求出k的范圍.【詳解】解:由題意可知:,

∴,故答案為:.【點睛】本題考查反比例函數(shù)的性質(zhì),解題的關(guān)鍵是熟練運用反比例函數(shù)的性質(zhì),本題屬于基礎(chǔ)題型.16、【分析】過D點作x軸的垂線交x軸于E點,可得到四邊形DBAE和三角形OBC的面積相等,通過面積轉(zhuǎn)化,可求出k的值.【詳解】解:過D點作x軸的垂線交x軸于E點,∵△ODE的面積和△OAC的面積相等.的面積與四邊形的面積相等,∴四邊形DEAB=8,設(shè)D點的橫坐標(biāo)為x,縱坐標(biāo)就為∵D為OB的中點.∴∴四邊形DEAB的面積可表示為:∴故答案為:【點睛】本題考查反比例函數(shù)的綜合運用,關(guān)鍵是知道反比例函數(shù)圖象上的點和坐標(biāo)軸構(gòu)成的三角形面積的特點以及根據(jù)面積轉(zhuǎn)化求出k的值.17、.【分析】作FH⊥x軸,EC⊥y軸,F(xiàn)H與EC交于D,先利用一次函數(shù)圖像上的點的坐標(biāo)特征得到A點(2,0),B點(0,2),易得△AOB為等腰直角三角形,則AB=2,所以,EF=AB=,且△DEF為等腰直角三角形,則FD=DE=EF=1,設(shè)F點坐標(biāo)是:(t,﹣t+2),E點坐標(biāo)為(t+1,﹣t+1),根據(jù)反比例函數(shù)圖象上的點的坐標(biāo)特征得到t(﹣t+2)=(t+1)?(﹣t+1),解得t=,則E點坐標(biāo)為(,),繼而可求得k的值.【詳解】如圖,作FH⊥x軸,EC⊥y軸,F(xiàn)H與EC交于D,由直線y=﹣x+2可知A點坐標(biāo)為(2,0),B點坐標(biāo)為(0,2),OA=OB=2,∴△AOB為等腰直角三角形,∴AB=2,∴EF=AB=,∴△DEF為等腰直角三角形,∴FD=DE=EF=1,設(shè)F點橫坐標(biāo)為t,代入y=﹣x+2,則縱坐標(biāo)是﹣t+2,則F的坐標(biāo)是:(t,﹣t+2),E點坐標(biāo)為(t+1,﹣t+1),∴t(﹣t+2)=(t+1)?(﹣t+1),解得t=,∴E點坐標(biāo)為(,),∴k=×=.故答案為.【點睛】本題考查反比例函數(shù)圖象上的點的坐標(biāo)特征,解題的關(guān)鍵是掌握反比例函數(shù)(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.18、6【解析】根據(jù)題意,畫出示意圖,易得:Rt△EDC∽Rt△CDF,進(jìn)而可得,代入數(shù)據(jù)可得答案.【詳解】如圖,在中,米,米,易得,,即,米.故答案為:6.【點睛】本題通過投影的知識結(jié)合三角形的相似,求解高的大小,是平行投影性質(zhì)在實際生活中的應(yīng)用.三、解答題(共78分)19、(1)證明見解析;(2)證明見解析;(3)24.【分析】(1)根據(jù)線段垂直平分線的性質(zhì)即可得出答案;(2)先判定AECF是平行四邊形,根據(jù)對角線垂直,即可得出答案;(3)根據(jù)勾股定理求出DE的值,根據(jù)“菱形的面積等于對角線乘積的一半”計算即可得出答案.【詳解】(1)證明:由圖可知,又∵,∴,∴;解:(2)由(1)知:∴四邊形是平行四邊形,又∵∴是菱形;(3)在中,∴;【點睛】本題考查的是菱形,難度適中,需要熟練掌握菱形的判定以及菱形面積的公式.20、,【分析】根據(jù)分式的運算法則進(jìn)行化簡,再把使分式有意義的方程的根代入即可求解.【詳解】解:====,∵x2+2x-3=0的兩根是-3,1,又∵x不能為1所以把x=﹣3代入,原式=.【點睛】本題考查分式的化簡求值、解一元二次方程,注意代入數(shù)值時,要選擇使分式有意義的數(shù).21、(1);(2)無解【分析】(1)先算開方,0指數(shù)冪,絕對值,再算加減;(2)兩邊同時乘以,去分母,再解整式方程.【詳解】(1)解:原式==(2)解:兩邊同時乘以,得:經(jīng)檢驗是原方程的增根,∴原方程無解.【點睛】考核知識點:解分式方程.把分式方程化為整式方程是關(guān)鍵.22、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,點P的坐標(biāo)為(,3)或(﹣3+3,12﹣6).【分析】(1)將點B,C的坐標(biāo)代入即可;(2)①求出頂點坐標(biāo),直線MB的解析式,由PD⊥x軸且知P(m,﹣2m+6),即可用含m的代數(shù)式表示出S;②在①的情況下,將S與m的關(guān)系式化為頂點式,由二次函數(shù)的圖象及性質(zhì)即可寫出點P的坐標(biāo);(3)分情況討論,如圖2﹣1,當(dāng)時,推出,則點P縱坐標(biāo)為3,即可寫出點P坐標(biāo);如圖2﹣2,當(dāng)時,證,由銳角三角函數(shù)可求出m的值,即可寫出點P坐標(biāo);當(dāng)時,不存在點P.【詳解】(1)將點B(3,0),C(0,3)代入,得,解得,∴二次函數(shù)的解析式為;(2)①∵,∴頂點M(1,4),設(shè)直線BM的解析式為,將點B(3,0),M(1,4)代入,得,解得,∴直線BM的解析式為,∵PD⊥x軸且,∴P(m,﹣2m+6),∴,即,∵點P在線段BM上,且B(3,0),M(1,4),∴;②∵,∵,∴當(dāng)時,S取最大值,∴P(,3);(3)存在,理由如下:①如圖2﹣1,當(dāng)時,∵,∴四邊形CODP為矩形,∴,將代入直線,得,∴P(,3);②如圖2﹣2,當(dāng)∠PCD=90°時,∵,,∴,∵,∴,∴,∴,∴,∴,解得(舍去),,∴P(,),③當(dāng)時,∵PD⊥x軸,∴不存在,綜上所述,點P的坐標(biāo)為(,3)或(,).【點睛】本題考查了二次函數(shù)的動點問題,掌握二次函數(shù)的性質(zhì)以及解二次函數(shù)的方法是解題的關(guān)鍵.23、(1)y=x2﹣x﹣6;(2)點D的坐標(biāo)為(,﹣5);(3)△BCE的面積有最大值,點E坐標(biāo)為(,﹣).【分析】(1)先求出點A,C的坐標(biāo),再將其代入y=x2+bx+c即可;(2)先確定BC交對稱軸于點D,由兩點之間線段最短可知,此時AD+CD有最小值,而AC的長度是定值,故此時△ACD的周長取最小值,求出直線BC的解析式,再求出其與對稱軸的交點即可;(3)如圖2,連接OE,設(shè)點E(a,a2﹣a﹣6),由式子S△BCE=S△OCE+S△OBE﹣S△OBC即可求出△BCE的面積S與a的函數(shù)關(guān)系式,由二次函數(shù)的圖象及性質(zhì)可求出△BCE的面積最大值,并可寫出此時點E坐標(biāo).【詳解】解:(1)∵OA=2,OC=6,∴A(﹣2,0),C(0,﹣6),將A(﹣2,0),C(0,﹣6)代入y=x2+bx+c,得,解得,b=﹣1,c=﹣6,∴拋物線的解析式為:y=x2﹣x﹣6;(2)在y=x2﹣x﹣6中,對稱軸為直線x=,∵點A與點B關(guān)于對稱軸x=對稱,∴如圖1,可設(shè)BC交對稱軸于點D,由兩點之間線段最短可知,此時AD+CD有最小值,而AC的長度是定值,故此時△ACD的周長取最小值,在y=x2﹣x﹣6中,當(dāng)y=0時,x1=﹣2,x2=3,∴點B的坐標(biāo)為(3,0),設(shè)直線BC的解析式為y=kx﹣6,將點B(3,0)代入,得,k=2,∴直線BC的解析式為y=2x﹣6,當(dāng)x=時,y=﹣5,∴點D的坐標(biāo)為(,﹣5);(3)如圖2,連接OE,設(shè)點E(a,a2﹣a﹣6),S△BCE=S△OCE+S△OBE﹣S△OBC=×6a+×3(﹣a2+a+6)﹣×3×6=﹣a2+a=﹣(a﹣)2+,根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當(dāng)a=時,△BCE的面積有最大值,當(dāng)a=時,∴此時點E坐標(biāo)為(,﹣).【點睛】本題考查的是二次函數(shù)的綜合,難度適中,第三問解題關(guān)鍵是找出面積與a的關(guān)系式,再利用二次函數(shù)的圖像與性質(zhì)求最值.24、BF2=FG·EF.【解析】由題意根據(jù)BE∥AC,可得∠1=∠E,然后有∠1=∠2,可得∠2=∠E,又由∠GFB=∠BFE,可得出△BFG∽△EFB,最后可得出BF2=FG?FE.【詳解】解:BF2=FG·EF.證明:∵BE∥AC,∴∠1=∠E.∵∠1=∠2,∴∠2=∠E.又∵∠BFG=∠EFB,∴△BFG∽△EFB.∴,∴BF2=FG·EF.【點睛】本題考查相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是根據(jù)BE∥AC,得出∠1=∠E,進(jìn)而判定△BFG∽△EFB.25、(1)見解析;(2)⊙O的半徑為1【分析】(1)連接AO延長AO交⊙O于點E,連接EC.想辦法證明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解決問題;

(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的半徑為x.求出OM,根據(jù)CM2=OC2-OM2=CF2-FM2構(gòu)建方程即可解決問題;【詳解】(1)連接AO并延長交⊙O于點E,連接EC.∵AE是直徑,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切線,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)連接BD,作OM⊥BC于M交⊙O于F,連接OC,CF.設(shè)⊙O的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論