運籌學 單純形法_第1頁
運籌學 單純形法_第2頁
運籌學 單純形法_第3頁
運籌學 單純形法_第4頁
運籌學 單純形法_第5頁
已閱讀5頁,還剩55頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

TheSimplexMethodIntroductionTheSimplexMethodageneralprocedureforsolvinglinearprogrammingproblemsOriginsofthesimplexmethod1947Dantzigprovedtobearemarkablyefficientmethodthatisusedroutinelytosolvehugeproblemsontoday’scomputersWhydowestudythesimplexmethod?GraphicalmethodcanonlysolvetoyproblemsComputingprincipleofsoftwares.TheEssenceoftheSimplexMethodThesimplexmethodisanalgebraicprocedure.However,itsunderlyingconceptsaregeometric.Wefirstfindacorner-pointfeasiblesolution(CPFsolution).ExaminewhethertheCPFsolutionisoptimal.Ifthesolutionisnotoptimal,findabetterCPFsolution,whichisusuallyadjacenttothelastsolution.Iteratetheabovetwostepsuntilanoptimalsolutionisfoundoritisindicatedtheproblemhasnooptimalsolution.TheEssenceoftheSimplexMethod602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)TheEssenceoftheSimplexMethodInitialization:Choose(0,0)astheinitialCPFsolutiontoexamine.(ThisisaconvenientchoicebecausenocalculationarerequiredtoidentifythisCPFsolution.)OptimalityTest:Concludethat(0,0)isnotanoptimalsolution.(AdjacentCPFsolutionsarebetter.)602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)TheEssenceoftheSimplexMethodIteration1:MovetoabetteradjacentCPFsolution,(0,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)Betweenthetwoedgesofthefeasibleregionthatemanatefrom(0,0),choosetomovealongtheedgethatleadsupthex2axis.Stopatthefirstnewconstraintboundary:2x2=12.Solvefortheintersectionofthenewsetofconstraintboundaries:(0,6).TheEssenceoftheSimplexMethodIteration1:MovetoabetteradjacentCPFsolution,(0,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)OptimalityTest:Concludethat(0,6)isnotanoptimalsolution.(AnadjacentCPFsolutionisbetter.)TheEssenceoftheSimplexMethodIteration2:MovetoabetteradjacentCPFsolution,(2,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)Betweenthetwoedgesofthefeasibleregionthatemanatefrom(0,6),choosetomovealongtheedgethatleadstotheright.Stopatthefirstnewconstraintboundaryencounteredwhenmovinginthatdirection:3x1+2x2=12.Solvefortheintersectionofthenewsetofconstraintboundaries:(2,6).TheEssenceoftheSimplexMethodIteration2:MovetoabetteradjacentCPFsolution,(2,6),byperformingthefollowingthreesteps.602424x1x2(6,0)(4,6)(4,3)(2,6)(0,9)(0,6)(0,0)(4,0)OptimalityTest:Concludethat(2,6)isanoptimalsolution,sostop.(NoneoftheadjacentCPFsolutionsarebetter.)TheEssenceoftheSimplexMethodThesimplexmethodfocusessolelyonCPFsolutions.Foranyproblemwithatleastoneoptimalsolution,findingonerequiresonlyfindingabestCPFsolution.Thesimplexmethodisaniterativealgorithm(asystematicsolutionprocedurethatkeepsrepeatingafixedseriesofsteps,calledaniteration,untiladesiredresulthasbeenobtained).TheEssenceoftheSimplexMethodWheneverpossible,theinitializationofthesimplexmethodchoosestheorigin(alldecisionvariablesequaltozero)tobetheinitialCPFsolution.GivenaCPFsolution,itismuchquickercomputationallytogatherinformationaboutitsadjacentCPFsolutionsthanaboutotherCPFsolutions.Therefore,eachtimethesimplexmethodperformsaniterationtomovefromthecurrentCPFsolutiontoabetterone,italwayschoosesaCPFsolutionthatisadjacenttothecurrentone.TheEssenceoftheSimplexMethodWecanidentifytherateoftheimprovementinZthatwouldbeobtainedbymovingalongeachedge.AmongtheedgeswithapositiverateofimprovementinZ,itthenchoosestomovealongtheonewiththelargestrateofimprovementinZ.TheEssenceoftheSimplexMethodApositiverateofimprovementinZimpliesthattheadjacentCPFsolutionisbetterthanthecurrentCPFsolution(sinceweareassumingmaximization),whereasanegativerateofimprovementinZimpliesthattheadjacentCPFsolutionisworse.Therefore,theoptimalitytestconsistssimplyofcheckingwhetheranyoftheedgesgiveapositiverateofimprovementinZ.Ifnonedo,thecurrentCPFsolutionisoptimal.AnExamplemaxz=50x1+100x2s.t.x1+x2≤300 2x1+x2≤400

x2≤250 x1,x2≥0maxz=50x1+100x2s.t.x1+x2+s1=300 2x1+x2+s2=400

x2+s3=250 x1,x2,s1,s2,s3≥0CoefficientMatrixThefeasibleregionisgivenasanumberoflinearequations:

x1+x2+s1=300 2x1+x2+s2=400 x2+s3=250Coefficientmatrixpj

isthejthcolumnvectorofcoefficientmatrixA.TherankofAis3,whichissmallerthan5,thenumberofvariables.ConceptsBasis:letAbeanm×n

coefficientmatrix,whoserankism.IfBisanon-singularm×msub-matrix,thenBisabasisoftheLPmodel.BasicVector:eachcolumninBiscalledabasicvector,andtherearembasicvectorsinB.Non-basicVector:eachcolumnoutsideBisanon-basicvector.BasicVariable:thevariablexicorrespondingtothebasicvectorpiiscalledabasicvariable,andtherearem

basicvariables.Non-basicVariable:thevariablexicorrespondingtothenon-basicvectorpiiscalledanon-basicvariable,andtherearen-m

non-basicvariables.

BasicSolutionBasicSolution:

foragivenbasis,weletthevaluesofthenon-basicvariablesbe0,thenwecansolvethemequationstogetauniquesolution.Inthissolution,thevaluesofbasicvariablesaredeterminedbysolvingtheequations,whilethevaluesofnon-basicvariablesare0.Assumewesettherightsub-matrixtobethebasis

Weletthevaluesofthenon-basicvariablesx1ands2be0,thenwehavethefollowingequations:

x2+s1=300

x2=400

x2+s3=250

ThenwegetasolutiontotheLPproblem:

x1=0,x2=400,s1=-100,s2=0,s3=-150InitialBasicFeasibleSolutionBasicFeasibleSolution(BFS):abasicsolutionthatisafeasiblesolution.FeasibleBasis:thebasiscorrespondingtoaBFS.HowtofindaninitialBFS?Itiseasyifthefollowingconditionshold:Everybjisnon-negative.Thereisanidentitysub-matrixinA,andletitbetheinitialbasis.OptimalityTestTotestwhetheraBFSisoptimal.TestnumberσjRepresentbasicvariablesintermsofnon-basicvariablesRepresentobjectivefunctionintermsofnon-basicvariablesThenthecoefficientofeachvariableintheobjectivefunctionisnowthetestnumberofthevariable.Denoteσiasthetestnumberofvariablexi.Inourexample,ifwetaketheidentitymatrixasthebasis,wehaveσ1=50,σ2=100,σ3=0,σ4=0,σ5=0.OptimalityTestAssumethattheobjectiverepresentedintermsofnon-basicvariablesisasfollows:Ifforsomebasis,wehaveallσj≤0,thenTomaximizethevalueofz,thevalueofshouldbe0.Inaddition,themaximumvalueofzequalsz0.Ontheotherhand,theBFScorrespondingtothecurrentbasisistheoptimalsolution,asthevaluesofthenon-basicvariablesxjareall0,whichmakesthevalueof0.

Foramaximizingproblem,theoptimalityconditionisσj≤0.Foraminimizingproblem,theoptimalityconditionisσj≥0.BasisTransformationActually,ourtaskistofindabasiswhosecorrespondingtestnumbersarenon-positive(formaximizingproblems);ifso,theassociatedBFSistheoptimalsolution.WhenthecurrentBFSisnotoptimal(atleastonetestnumberispositive),weshouldfindanewfeasiblebasissuchthatthecorrespondingBFSimprovesthevalueofobjectivefunction.BasistransformationDeterminethe“enteringvariable”Determinethe“l(fā)eavingvariable”DeterminetheEnteringVariableAccordingtothedefinitionofthetestnumbers,weknowthatσi=0foreverybasicvariable.Ifthereexistsonetestnumberσj>0,thensettingnon-basicvariablexj

asabasicvariablemayincreaseitsvalueandthusthevalueofobjectivefunction.Letthenon-basicvariablewiththelargestvalueofσj

astheenteringvariableandsetitasabasicvariable.Inourexample,σ2=100isthemaximumtestnumber,thuswesetx2

astheenteringvariable.DeterminetheLeavingVariableTheprincipleofdeterminingtheleavingvariableistomakethenewbasicsolutionfeasible(thatis,aBFS)Inourexample:Wehaveknownthattheenteringvariableisx2,thusforthethreeequationswecanfindthreeupperboundsforx2,whichareDeterminetheLeavingVariableTherefore,themaximumvalueofx2thatensuresthenewbasicsolutionisaBFSis250.Thismakesthevalueofs30.Thuswelets3betheleavingvariable.Now,wehaveanewBFS:x1=0,x2=250,s1=50,s2=150,s3=0.Andthevalueofobjectivefunctionis25000,whichisbetterthan0.DeterminetheLeavingVariableDeterminetheleavingvariable----theminimumratiotestForeachequationwherethecoefficientoftheenteringvariableisstrictlypositive

(>0),wecalculatetheratio

oftheright-handsidetothecoefficientoftheenteringvariable.Thebasicvariableintheequationwiththeminimumratioissetastheleavingvariable.TheSimplexMethodInitializationFindtheinitialbasisandBFSOptimalitytestWhetherthetestnumbersareallnon-positive(formaximizingproblems)IftheBFSisnotoptimal,do“basistransformation”andgetanewBFS,gobacktolaststep;otherwise,thealgorithmisterminated.ComputationofTestNumberσjIneachiterationofbasistransformation,byre-rankingdecisionvariablesandtransforminglinearequations,wecanhavethefollowingmodel,inwhichthefeasiblebasisisanidentitymatrixoforderm:DenotebasicvariablesasDenotenon-basicvariablesasComputationofTestNumberσjFirstwedenoteeachbasicvariableinxitermsofnon-basicvariables:Theobjectivefunctioncanbewrittenas:where

TheSimplexMethodinTabularFormThetabularformofthesimplexmethodrecordsonlytheessentialinformation,namely,thecoefficientsofthevariables,theconstantsontheright-handsidesoftheequations,andthebasicvariableappearingineachequation.Thissaveswritingthesymbolsforthevariablesineachoftheequations,butwhatisevenmoreimportantisthefactthatitpermitshighlightingthenumbersinvolvedinarithmeticcalculationsandrecordingthecomputationscompactly.TheSimplexMethodinTabularFormmaxz=50x1+100x2+0s1+0s2+0s3s.t. x1+x2+s1 =300 2x1+x2 +s2=400

x2 +s3=250 x1,x2,s1,s2,s3≥0TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0The0thIteration(findinitialBFS)TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Alldecisionvariables(includingslackvariables)TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0CoefficientscorrespondingtothevariablesTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0CoefficientMatrixoftheconstraintsTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Theconstantsontheright-handsidesoftheequationsTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Identitymatrix,whichistheinitialfeasiblebasisTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Basicvariables,eachappearinginoneequationTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0CoefficientofeachbasicvariableTheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0zjisthevalueofforcolumnj.WefirstleteachelementincolumnjmultiplyitscorrespondingelementincolumncB,thenaddthemup.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Thetestnumberσj,whichiscj-zj.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0z

isthevalueoftheobjectivefunctionforthecurrentBFS.Wefirstleteachelementincolumnb

multiplythecorrespondingelementincolumncB,andthenaddthemup.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0Asσ1andσ2

arepositiveandσ1<σ2,theinitialBFSisnotoptimalandx2

istheenteringvariable.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000000s1s2s3000

111002101001001300400250300/1400/1250/1zjσj=cj-zj

0000050100000z=0FindtheleavingvariableFindthepositivecoefficientsoftheenteringvariables.Findtheconstantsontheright-handsidesoftheequationsthatcorrespondtotheenteringvariables.Divideeachofthesecoefficientsintotherightsideconstantsforthesamerow.PivotElement:theintersectionofthecolumncorrespondingtotheenteringvariableandtherowcorrespondingtotheleavingvariable.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000001s1s2x200100

1010-12001-1010015015025050/1150/2—zjσj=cj-zj

01000010050000-100z=25000ThefirstiterationThroughrowtransformation,wesetthepivotelementas1andtheothercoefficientsinthecolumncorrespondingtotheenteringvariableas0.Notethattheelementsincolumnbarealsotransformed.Inourexample,afteriteration0,thepivotelementa32

isalready1,thuswekeepthe3rdrowunchanged.Thenweletthe3rdrowmultiply-1andaddittothe1strowandthe2ndrow,respectively,tomakethecoefficientsofx2be0.

TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000001s1s2x200100

1010-12001-1010015015025050/1150/2—zjσj=cj-zj

01000010050000-100z=25000Afteriteration1,thevalueofzisimprovedobviously.Next,wecanfindthattheenteringvariableandtheleavingvariablearex1ands1,respectively.Thepivotelementisa11.TheSimplexMethodinTabularFormIterationBasicVariablescBx1x2

s1

s2

s3bRatiobi/aij

501000002x1s2x2500100

1010-100-211010015050250zjσj=cj-zj

501005005000-500-50z=27500Aftertheseconditeration,wefindthatalltestnumbersarenon-positive,thusthecurrentBFSisoptimal,andthemostfavorablevalueisz=27500.PracticeAnotherProblem

minf=2x1+3x2

s.t.x1+x2≥350

x1≥125 2x1+x2≤600

x1,x2≥0Letz=-f

maxz=–2x1–3x2

s.t.x1+x2–s1=350

x1–s2=125 2x1+x2+s3=600

x1,x2,s1,s2,s3≥0BigMMethodForsomeproblems,itisdifficulttofindaninitialBFS,becauseitisdifficulttofindaninitialfeasiblebasis.Anidentitymatrixofordermisanidealfeasiblebasis.Constructanartificialproblembyaddingartificialvariables maxz=-2x1-3x2-M

a1-M

a2 s.t.x1+x2–s1+a1=350

x1–s2+a2=125 2x1+x2+s3=600

x1,x2,s1,s2,s3,a1,a2≥0BigMMethodDifferencebetweenartificialvariablesandslackvariablesThevaluesofslackvariablescanbeeither0orpositive.Thevaluesofartificialvariablesintheoptimalsolutioncanonlybe0;otherwise,thesolutionisnotafeasibleonefortheoriginalmodel.BigMMethodInordertomakethevaluesofartificialvariablesbe0inthesolutionwefinallyget,weletthecoefficientsoftheartificialvariablesbe-M,whereM

ishugepositivenumber.Thisactuallyassignsanoverwhelmingpenaltytohavingpositiveartificialvariables.Iftheoriginalproblemhasfeasiblesolutions,thesimplexmethodwillfinallysetartificialvariablestobenon-basicvariables;otherwise,theoriginalproblemhasnofeasiblesolutions.BigMMethodIterationBasicvariablescB

x1

x2

s1

s2

s3

a1

a2bRatio

-2-3000-M-M0a1a2s3-M-M0

11-10010100-10012100100350125600350/1125/1600/2zj-2M-M

M

M0-M-M-2+2M-3+M-M-M000-475M1a1x1s3-M-20

01-1101-1100-1001010210-2225125350225-----350/2

zj

-2-M

M-M+20-M

M-20-3+M-M

M-2002-2M-225M-250BigMMethodIterationBasicvariablescB

x1

x2

s1

s2

s3

a1

a2bRatio

-2-3000-M-M2a1x1s2-M-20

01/2-10-1/21011/2001/20001/20110.5300/0.5175/0.5zj

-2-1/2M-1M01/2M-1-M001/2M-2-M0-1/2M+10-M-50M-6003

x2

x1

s2

-3-20

01-20-12010101-1000111-1-1

100250125

zj

-2-3401-4000-40-1-M+4-M

-800TheTwo-PhaseMethodWeaddartificialvariablesanddividetheprocessofsolvinganLPproblemintotwophases.Phase1:tofindaBFSfortherealproblem maxz=-a1

-a2

s.t.x1+x2–s1+a1

=350

x1–s2+a2

=125 2x1+x2+s3=600

x1,x2,s1,s2,s3,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論