版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.某次數(shù)學(xué)糾錯比賽共有道題目,每道題都答對得分,答錯或不答得分,全班名同學(xué)參加了此次競賽,他們的得分情況如下表所示:成績(分)人數(shù)則全班名同學(xué)的成績的中位數(shù)和眾數(shù)分別是()A., B., C.,70 D.,2.在,,,則的值是()A. B. C. D.3.二次函數(shù)的圖象與軸有且只有一個交點(diǎn),則的值為()A.1或-3 B.5或-3 C.-5或3 D.-1或34.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+15.已知⊙O的半徑為4cm,點(diǎn)P在⊙O上,則OP的長為()A.2cm B.4cm C.6cm D.8cm6.從一副完整的撲克牌中任意抽取1張,下列事件與抽到“”的概率相同的是()A.抽到“大王” B.抽到“2” C.抽到“小王” D.抽到“紅桃”7.投擲硬幣m次,正面向上n次,其頻率p=,則下列說法正確的是()A.p一定等于B.p一定不等于C.多投一次,p更接近D.投擲次數(shù)逐步增加,p穩(wěn)定在附近8.下列式子中表示是的反比例函數(shù)的是()A. B. C. D.9.如圖,在平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A,B,與反比例函數(shù)(k>0)在第一象限的圖象交于點(diǎn)E,F(xiàn),過點(diǎn)E作EM⊥y軸于M,過點(diǎn)F作FN⊥x軸于N,直線EM與FN交于點(diǎn)C,若,則△OEF與△CEF的面積之比是()A.2:1 B.3:1 C.2:3 D.3:210.小蘇和小林在如圖所示①的跑道上進(jìn)行米折返跑.在整個過程中,跑步者距起跑線的距離單位:與跑步時間單位:的對應(yīng)關(guān)系如圖所示②.下列敘述正確的是()A.兩人從起跑線同時出發(fā),同時到達(dá)終點(diǎn);B.小蘇跑全程的平均速度大于小林跑全程的平均速度;C.小蘇前15s跑過的路程大于小林前15s跑過的路程;D.小林在跑最后100m的過程中,與小蘇相遇2次;二、填空題(每小題3分,共24分)11.如圖,是以點(diǎn)為圓心的圓形紙片的直徑,弦于點(diǎn),.將陰影部分沿著弦翻折壓平,翻折后,弧對應(yīng)的弧為,則點(diǎn)與弧所在圓的位置關(guān)系為____________.12.若關(guān)于的方程的解為非負(fù)數(shù),且關(guān)于的不等式組有且僅有5個整數(shù)解,則符合條件的所有整數(shù)的和是__________.13.下列四個函數(shù):①②③④中,當(dāng)x<0時,y隨x的增大而增大的函數(shù)是______(選填序號).14.九年級某同學(xué)6次數(shù)學(xué)小測驗的成績分別為:100,112,102,105,112,110,則該同學(xué)這6次成績的眾數(shù)是_____.15.如圖,在矩形中對角線與相交于點(diǎn),,垂足為點(diǎn),且,則的長為___________.16.已知四條線段a、2、6、a+1成比例,則a的值為_____.17.如圖,在長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點(diǎn)D與點(diǎn)B重合,折痕為EF,則ΔABE的面積為________cm218.如圖,在△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=______三、解答題(共66分)19.(10分)甲、乙、丙三人進(jìn)行乒乓球比賽.他們通過摸球的方式?jīng)Q定首場比賽的兩個選手:在一個不透明的口袋中放入兩個紅球和一個白球,這些球除顏色外其他都相同,將它們攪勻,三人從中各摸出一個球,摸到紅球的兩人即為首場比賽選手.求甲、丙兩人成為比賽選手的概率.(請用畫樹狀圖或列表等方法寫出分析過程并給出結(jié)果.)20.(6分)已知:如圖,在四邊形ABCD中,AD∥BC,∠C=90°,AB=AD,連接BD,AE⊥BD,垂足為E.(1)求證:△ABE∽△DBC;(2)若AD=25,BC=32,求線段AE的長.21.(6分)如圖,已知直線l切⊙O于點(diǎn)A,B為⊙O上一點(diǎn),過點(diǎn)B作BC⊥l,垂足為點(diǎn)C,連接AB、OB.(1)求證:∠ABC=∠ABO;(2)若AB=,AC=1,求⊙O的半徑.22.(8分)已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(0,4),B(2,m).(1)求二次函數(shù)圖象的對稱軸.(2)求m的值.23.(8分)將四人隨機(jī)分成甲、乙兩組參加羽毛球比賽,每組兩人.(1)在甲組的概率是多少?(2)都在甲組的概率是多少?24.(8分)(1)計算:4sin260°+tan45°-8cos230°(2)在Rt△ABC中,∠C=90°.若∠A=30°,b=5,求a、c.25.(10分)近年來,各地“廣場舞”噪音干擾的問題倍受關(guān)注.相關(guān)人員對本地區(qū)15~65歲年齡段的市民進(jìn)行了隨機(jī)調(diào)查,并制作了如下相應(yīng)的統(tǒng)計圖.市民對“廣場舞”噪音干擾的態(tài)度有以下五種:A.沒影響B(tài).影響不大C.有影響,建議做無聲運(yùn)動D.影響很大,建議取締E.不關(guān)心這個問題根據(jù)以上信息解答下列問題:(1)根據(jù)統(tǒng)計圖填空:,A區(qū)域所對應(yīng)的扇形圓心角為度;(2)在此次調(diào)查中,“不關(guān)心這個問題”的有25人,請問一共調(diào)查了多少人?(3)將條形統(tǒng)計圖補(bǔ)充完整;(4)若本地共有14萬市民,依據(jù)此次調(diào)查結(jié)果估計本地市民中會有多少人給出建議?26.(10分)二次函數(shù)上部分點(diǎn)的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表:x…0123…y…300m…(1)直接寫出此二次函數(shù)的對稱軸;(2)求b的值;(3)直接寫出表中的m值,m=;(4)在平面直角坐標(biāo)系xOy中,畫出此二次函數(shù)的圖象.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】根據(jù)中位數(shù)的定義把這組數(shù)據(jù)從小到大排列,求出最中間2個數(shù)的平均數(shù);根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù)即可.【詳解】把這組數(shù)據(jù)從小到大排列,最中間2個數(shù)的平均數(shù)是(70+80)÷2=75;
則中位數(shù)是75;
70出現(xiàn)了13次,出現(xiàn)的次數(shù)最多,則眾數(shù)是70;
故選:A.【點(diǎn)睛】本題考查了眾數(shù)和中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意眾數(shù)不止一個.2、B【分析】根據(jù)互余兩角三角函數(shù)的關(guān)系:sin2A+sin2B=1解答.【詳解】∵在Rt△ABC中,∠C=90,∴∠A+∠B=90,∴sin2A+sin2B=1,sinA>0,∵sinB=,∴sinA==.故選B.【點(diǎn)睛】本題考查互余兩角三角函數(shù)的關(guān)系.3、B【分析】由二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點(diǎn),可知△=0,繼而求得答案.【詳解】解:∵二次函數(shù)y=x2-(m-1)x+4的圖象與x軸有且只有一個交點(diǎn),∴△=b2-4ac=[-(m-1)]2-4×1×4=0,∴(m-1)2=16,解得:m-1=±4,∴m1=5,m2=-1.∴m的值為5或-1.故選:B.【點(diǎn)睛】此題考查了拋物線與x軸的交點(diǎn)問題,注意掌握二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點(diǎn)與一元二次方程ax2+bx+c=0根之間的關(guān)系.△=b2-4ac決定拋物線與x軸的交點(diǎn)個數(shù).△>0時,拋物線與x軸有2個交點(diǎn);△=0時,拋物線與x軸有1個交點(diǎn);△<0時,拋物線與x軸沒有交點(diǎn).4、C【解析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質(zhì)結(jié)合S△ADE=S四邊形BCED,可得出,結(jié)合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點(diǎn)睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.5、B【分析】根據(jù)點(diǎn)在圓上,點(diǎn)到圓心的距離等于圓的半徑求解.【詳解】∵⊙O的半徑為4cm,點(diǎn)P在⊙O上,∴OP=4cm.故選:B.【點(diǎn)睛】本題考查了點(diǎn)與圓的位置關(guān)系:設(shè)⊙O的半徑為r,點(diǎn)P到圓心的距離OP=d,則有:點(diǎn)P在圓外?d>r;點(diǎn)P在圓上?d=r;點(diǎn)P在圓內(nèi)?d<r.6、B【分析】根據(jù)撲克牌的張數(shù),利用概率=頻數(shù)除以總數(shù)即可解題.【詳解】解:撲克牌一共有54張,所以抽到“”的概率是,A.抽到“大王”的概率是,B.抽到“2”的概率是,C.抽到“小王”的概率是,D.抽到“紅桃”的概率是,故選B.【點(diǎn)睛】本題考查了概率的實(shí)際應(yīng)用,屬于簡單題,熟悉概率的計算方法是解題關(guān)鍵.7、D【分析】大量反復(fù)試驗時,某事件發(fā)生的頻率會穩(wěn)定在某個常數(shù)的附近,這個常數(shù)就叫做事件概率的估計值,而不是一種必然的結(jié)果.【詳解】投擲硬幣m次,正面向上n次,投擲次數(shù)逐步增加,p穩(wěn)定在附近.故選:D.【點(diǎn)睛】考查利用頻率估計概率,大量反復(fù)試驗下頻率穩(wěn)定值即概率.注意隨機(jī)事件可能發(fā)生,也可能不發(fā)生.8、D【解析】根據(jù)反比例函數(shù)的定義逐項分析即可.【詳解】A.是一次函數(shù),故不符合題意;B.二次函數(shù),故不符合題意;C.不是反比例函數(shù),故不符合題意;D.是反比例函數(shù),符合題意;故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的定義,一般地,形如(k為常數(shù),k≠0)的函數(shù)叫做反比例函數(shù).9、A【分析】根據(jù)E,F(xiàn)都在反比例函數(shù)的圖象上設(shè)出E,F(xiàn)的坐標(biāo),進(jìn)而分別得出△CEF的面積以及△OEF的面積,然后即可得出答案.【詳解】解:設(shè)△CEF的面積為S1,△OEF的面積為S2,過點(diǎn)F作FG⊥BO于點(diǎn)G,EH⊥AO于點(diǎn)H,∴GF∥MC,∴=,∵M(jìn)E?EH=FN?GF,∴==,設(shè)E點(diǎn)坐標(biāo)為:(x,),則F點(diǎn)坐標(biāo)為:(3x,),∴S△CEF=(3x﹣x)(﹣)=,∵S△OEF=S梯形EHNF+S△EOH﹣S△FON=S梯形EHNF=(+)(3x﹣x)=k∴==.故選:A.【點(diǎn)睛】此題主要考查了反比例函數(shù)的綜合應(yīng)用以及三角形面積求法,根據(jù)已知表示出E,F(xiàn)的點(diǎn)坐標(biāo)是解題關(guān)鍵,有一定難度,要求同學(xué)們能將所學(xué)的知識融會貫通.10、D【分析】依據(jù)函數(shù)圖象中跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應(yīng)關(guān)系,即可得到正確結(jié)論.【詳解】解:由函數(shù)圖象可知:兩人從起跑線同時出發(fā),先后到達(dá)終點(diǎn),小林先到達(dá)終點(diǎn),故A錯誤;根據(jù)圖象兩人從起跑線同時出發(fā),小林先到達(dá)終點(diǎn),小蘇后到達(dá)終點(diǎn),小蘇用的時間多,而路程相同,所以小蘇跑全程的平均速度小于小林跑全程的平均速度,故B錯誤;小蘇前15s跑過的路程小于小林前15s跑過的路程,故C錯誤;小林在跑最后100m的過程中,兩人相遇時,即實(shí)線與虛線相交的地方,由圖象可知2次,故D正確;
故選:D.【點(diǎn)睛】本題主要考查了函數(shù)圖象的讀圖能力,要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實(shí)際意義得到正確的結(jié)論.二、填空題(每小題3分,共24分)11、點(diǎn)在圓外【分析】連接OC,作OF⊥AC于F,交弧于G,判斷OF與FG的數(shù)量關(guān)系即可判斷點(diǎn)和圓的位置關(guān)系.【詳解】解:如圖,連接OC,作OF⊥AC于F,交弧于G,∵,∴OA=OB=OC=5,AE=7,OE=2,∵,∴,∴,∵OF⊥AC,∴CF=AC,∴,∵,∴,∴,∴,∴點(diǎn)與弧所在圓的位置關(guān)系是點(diǎn)在圓外.故答案是:點(diǎn)在圓外.【點(diǎn)睛】本題考查了點(diǎn)和圓位置關(guān)系,利用垂徑定理進(jìn)行有關(guān)線段的計算,通過構(gòu)造直角三角形是解題的關(guān)鍵.12、1【分析】解方程得x=,即a≠1,可得a≤5,a≠1;解不等式組得0<a≤1,綜合可得0<a<1,故滿足條件的整數(shù)a的值為1,2.【詳解】解不等式組,可得,∵不等式組有且僅有5個整數(shù)解,∴,∴0<a≤1,解分式方程,可得x=,即a≠1又∵分式方程有非負(fù)數(shù)解,∴x≥0,即≥0,解得a≤5,a≠1∴0<a<1,∴滿足條件的整數(shù)a的值為1,2,∴滿足條件的整數(shù)a的值之和是1+2=1,故答案為:1.【點(diǎn)睛】考點(diǎn):分式方程的解;一元一次不等式組的整數(shù)解;含待定字母的不等式(組);綜合題,熟練掌握和靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.13、②③【分析】分別根據(jù)一次函數(shù)、反比例函數(shù)和二次函數(shù)的單調(diào)性分別進(jìn)行判斷即可.【詳解】解:
①在y=-2x+1中,k=-2<0,則y隨x的增大而減少;
②在y=3x+2中,k=3>,則y隨x的增大而增大;
③在中,k=-3<0,當(dāng)x<00時,在第二象限,y隨x的增大而增大;
④在y=x2+2中,開口向上,對稱軸為x=0,所以當(dāng)x<0時,y隨x的增大而減??;
綜上可知滿足條件的為:②③.
故答案為:②③.【點(diǎn)睛】本題主要考查函數(shù)的增減性,掌握一次函數(shù)、反比例函數(shù)的增減性與k的關(guān)系,以及二次函數(shù)的增減性是解題的關(guān)鍵.14、1【分析】根據(jù)眾數(shù)的出現(xiàn)次數(shù)最多的特點(diǎn)從數(shù)據(jù)中即可得到答案.【詳解】解:在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對眾數(shù)的理解,掌握眾數(shù)的定義是解題的關(guān)鍵.15、【分析】由矩形的性質(zhì)可得OC=OD,于是設(shè)DE=x,則OE=2x,OD=OC=3x,然后在Rt△OCE中,根據(jù)勾股定理即可得到關(guān)于x的方程,解方程即可求出x的值,進(jìn)而可得CD的長,易證△ADC∽△CED,然后利用相似三角形的性質(zhì)即可求出結(jié)果.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴設(shè)DE=x,則OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=,即DE=,∴,∵∠ADE+∠CDE=90°,∠ECD+∠CDE=90°,∴∠ADE=∠ECD,又∵∠ADC=∠CED=90°,∴△ADC∽△CED,∴,即,解得:.故答案為:.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理和相似三角形的判定與性質(zhì),屬于??碱}型,熟練掌握上述基本知識是解題的關(guān)鍵.16、3【分析】由四條線段a、2、6、a+1成比例,根據(jù)成比例線段的定義,即可得=,即可求得a的值.【詳解】解:∵四條線段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合題意,舍去).故答案為3.【點(diǎn)睛】本題考查了線段成比例的定義:若四條線段a,b,c,d成比例,則有a:b=c:d.17、6【解析】由折疊的性質(zhì)可知AE與BE間的關(guān)系,根據(jù)勾股定理求出AE長可得面積.【詳解】解:由題意可知BE=ED.因為AD=AE+DE=AE+BE=9cm,所以BE=9-AEcm.在RtΔABE中,根據(jù)勾股定理可知,AB2+AE2=BE2,所以32+A故答案為:6【點(diǎn)睛】本題考查了勾股定理,由折疊性質(zhì)得出直角邊與斜邊的關(guān)系是解題的關(guān)鍵.18、【解析】如圖,連接BB′,∵△ABC繞點(diǎn)A順時針方向旋轉(zhuǎn)60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD?C′D=?1.故答案為:?1.點(diǎn)睛:本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),作輔助線構(gòu)造出全等三角形并求出BC′在等邊三角形的高上是解題的關(guān)鍵,也是本題的難點(diǎn).三、解答題(共66分)19、.【解析】先畫樹狀圖得到所有等可能的情況,然后找出符合條件的情況數(shù),利用概率公式求解即可.【詳解】畫樹狀圖為:由樹狀圖知,共有6種等可能的結(jié)果數(shù),其中甲、丙兩人成為比賽選手的結(jié)果有2種,所以甲、丙兩人成為比賽選手的概率為=.【點(diǎn)睛】本題考查了列表法或樹狀圖法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)證明見解析;(2)1【分析】(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因為∠AEB=∠C=90°,所以可證△ABE∽△DBC;
(2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可.【詳解】(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;
(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
得,
∵AB=AD=25,BC=32,
∴,
∴BE=20,
∴AE==1.【點(diǎn)睛】此題考查相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)及勾股定理解題.21、(1)詳見解析;(2)⊙O的半徑是.【分析】(1)連接OA,求出OA∥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)得出∠OBA=∠OAB,∠OBA=∠ABC,即可得出答案;(2)根據(jù)矩形的性質(zhì)求出OD=AC=1,根據(jù)勾股定理求出BC,根據(jù)垂徑定理求出BD,再根據(jù)勾股定理求出OB即可.【詳解】(1)證明:連接OA,∵OB=OA,∴∠OBA=∠OAB,∵AC切⊙O于A,∴OA⊥AC,∵BC⊥AC,∴OA∥BC,∴∠OBA=∠ABC,∴∠ABC=∠ABO;(2)解:過O作OD⊥BC于D,∵OD⊥BC,BC⊥AC,OA⊥AC,∴∠ODC=∠DCA=∠OAC=90°,∴OD=AC=1,在Rt△ACB中,AB=,AC=1,由勾股定理得:BC==3,∵OD⊥BC,OD過O,∴BD=DC=BC==1.5,在Rt△ODB中,由勾股定理得:OB=,即⊙O的半徑是.【點(diǎn)睛】此題主要考查切線的性質(zhì)及判定,解題的關(guān)鍵熟知等腰三角形的性質(zhì)、垂徑定理及切線的性質(zhì).22、(1)x=1;(2)m=4【分析】(1)由頂點(diǎn)式即可得出該二次函數(shù)圖象的對稱軸;(2)利用二次函數(shù)的對稱性即可解決問題.【詳解】解:(1)∵,∴該二次函數(shù)圖象的對稱軸為:直線x=1,(2)∵該二次函數(shù)圖象的對稱軸為:直線x=1,∴A(0,4),B(2,m).是關(guān)于直線x=1成對稱,故m=4.【點(diǎn)睛】本題考查了二次函數(shù)的頂點(diǎn)式的性質(zhì),掌握頂點(diǎn)式的頂點(diǎn)坐標(biāo)及對稱性是解題的關(guān)鍵.23、(1)(2)【解析】解:所有可能出現(xiàn)的結(jié)果如下:甲組
乙組
結(jié)果
()
()
()
()
()
()
總共有6種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.(1)所有的結(jié)果中,滿足在甲組的結(jié)果有3種,所以在甲組的概率是,···2分(2)所有的結(jié)果中,滿足都在甲組的結(jié)果有1種,所以都在甲組的概率是.利用表格
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物業(yè)管理招標(biāo)文件總匯
- 乘坐校車的學(xué)生保證
- 農(nóng)田建設(shè)監(jiān)理招標(biāo)文件發(fā)布
- 無紡布采購意向書
- 工程按時完成保證協(xié)議
- 極致版安裝服務(wù)合同范本
- 招標(biāo)文件辦公家具規(guī)格
- 股權(quán)質(zhì)押借款合同范本
- 借道施工協(xié)議
- 工程分包合同的勞務(wù)成本控制策略
- 高中二年級上學(xué)期數(shù)學(xué)《拋物線的簡單幾何性質(zhì)(二)》教學(xué)課件
- 2024華北水利水電工程集團(tuán)招聘20人歷年(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 《數(shù)據(jù)可視化 》 課件全套 楊華 第1-9章 數(shù)據(jù)可視化概述- 可視化大屏
- 四色安全風(fēng)險空間分布圖設(shè)計原則和要求
- GB/T 44146-2024基于InSAR技術(shù)的地殼形變監(jiān)測規(guī)范
- 齊魯工業(yè)大學(xué)《中國近現(xiàn)代史綱要》2019-2020學(xué)年期末試卷
- 醫(yī)療質(zhì)量管理手冊
- 工程測量基礎(chǔ)智慧樹知到期末考試答案章節(jié)答案2024年青島濱海學(xué)院
- 【《青島海爾公司應(yīng)收賬款管理問題及對策研究》10000字】
- 民族特色操舞智慧樹知到期末考試答案章節(jié)答案2024年保山學(xué)院
- 神東礦區(qū)東勝區(qū)補(bǔ)連塔煤礦改擴(kuò)建項目(2800萬噸-年)環(huán)評
評論
0/150
提交評論