下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下圖所示函數圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位2.如圖是函數在區(qū)間上的圖象,為了得到這個函數的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變3.若復數滿足,則對應的點位于復平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.點為的三條中線的交點,且,,則的值為()A. B. C. D.5.設集合(為實數集),,,則()A. B. C. D.6.若集合,則()A. B.C. D.7.已知命題若,則,則下列說法正確的是()A.命題是真命題B.命題的逆命題是真命題C.命題的否命題是“若,則”D.命題的逆否命題是“若,則”8.等比數列的各項均為正數,且,則()A.12 B.10 C.8 D.9.在等差數列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18010.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.311.公差不為零的等差數列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數列,則數列{an}的公差等于()A.1 B.2 C.3 D.412.已知向量與向量平行,,且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.14.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.15.關于函數有下列四個命題:①函數在上是增函數;②函數的圖象關于中心對稱;③不存在斜率小于且與函數的圖象相切的直線;④函數的導函數不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)16.已知角的終邊過點,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.18.(12分)的內角,,的對邊分別是,,,已知.(1)求角;(2)若,,求的面積.19.(12分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點.(1)證明:平面(2)若,求二面角的余弦值.20.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.21.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.22.(10分)[選修45:不等式選講]已知都是正實數,且,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據函數圖像得到函數的一個解析式為,再根據平移法則得到答案.【詳解】設函數解析式為,根據圖像:,,故,即,,,取,得到,函數向右平移個單位得到.故選:.【點睛】本題考查了根據函數圖像求函數解析式,三角函數平移,意在考查學生對于三角函數知識的綜合應用.2.A【解析】
由函數的最大值求出,根據周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數的圖象求解析式,考查函數圖象間的變換關系,屬于中檔題.3.D【解析】
利用復數模的計算、復數的除法化簡復數,再根據復數的幾何意義,即可得答案;【詳解】,對應的點,對應的點位于復平面的第四象限.故選:D.【點睛】本題考查復數模的計算、復數的除法、復數的幾何意義,考查運算求解能力,屬于基礎題.4.B【解析】
可畫出圖形,根據條件可得,從而可解出,然后根據,進行數量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數乘的幾何意義,向量的數乘運算及向量的數量積的運算,考查運算求解能力,屬于中檔題.5.A【解析】
根據集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.6.A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關鍵.7.B【解析】
解不等式,可判斷A選項的正誤;寫出原命題的逆命題并判斷其真假,可判斷B選項的正誤;利用原命題與否命題、逆否命題的關系可判斷C、D選項的正誤.綜合可得出結論.【詳解】解不等式,解得,則命題為假命題,A選項錯誤;命題的逆命題是“若,則”,該命題為真命題,B選項正確;命題的否命題是“若,則”,C選項錯誤;命題的逆否命題是“若,則”,D選項錯誤.故選:B.【點睛】本題考查四種命題的關系,考查推理能力,屬于基礎題.8.B【解析】
由等比數列的性質求得,再由對數運算法則可得結論.【詳解】∵數列是等比數列,∴,,∴.故選:B.【點睛】本題考查等比數列的性質,考查對數的運算法則,掌握等比數列的性質是解題關鍵.9.A【解析】
因為,可得,根據等差數列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數列前項和,解題關鍵是掌握等差中項定義和等差數列前項和公式,考查了分析能力和計算能力,屬于基礎題.10.C【解析】
對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.11.B【解析】
設數列的公差為.由,成等比數列,列關于的方程組,即求公差.【詳解】設數列的公差為,①.成等比數列,②,解①②可得.故選:.【點睛】本題考查等差數列基本量的計算,屬于基礎題.12.B【解析】
設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求函數的導數,利用導數的幾何意義即可求出切線方程.【詳解】解:∵,
∴,
則,
又,即切點坐標為(1,0),
則函數在點(1,f(1))處的切線方程為,
即,
故答案為:.【點睛】本題主要考查導數的幾何意義,根據導數和切線斜率之間的關系是解決本題的關鍵.14.【解析】
設,利用正弦定理,根據,得到①,再利用余弦定理得②,①②平方相加得:,轉化為有解問題求解.【詳解】設,所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設,在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應用,還考查了運算求解的能力,屬于難題.15.①②③【解析】
由單調性、對稱性概念、導數的幾何意義、導數與極值的關系進行判斷.【詳解】函數的定義域是,由于,在上遞增,∴函數在上是遞增,①正確;,∴函數的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數的單調性、對稱性,考查導數的幾何意義、導數與極值,解題時按照相關概念判斷即可,屬于中檔題.16.【解析】
由題意利用任意角的三角函數的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點,∴,,∴,故答案為:.【點睛】本題主要考查任意角的三角函數的定義,兩角和差正弦公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析,或【解析】
(1)根據點到直線的公式結合二次函數的性質即可求出;(2)設,,,,表示出直線,的方程,利用表示出,,即可求定點的坐標.【詳解】(1)設拋物線上點的坐標為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設,,,,,,直線,的方程為分別為,,由兩條直線都經過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學生對這些知識的理解掌握水平和分析推理能力.18.(1)(2)【解析】
(1)利用余弦定理可求,從而得到的值.(2)利用誘導公式和正弦定理化簡題設中的邊角關系可得,得到值后利用面積公式可求.【詳解】(1)由,得.所以由余弦定理,得.又因為,所以.(2)由,得.由正弦定理,得,因為,所以.又因,所以.所以的面積.【點睛】在解三角形中,如果題設條件是關于邊的二次形式,我們可以利用余弦定理化簡該條件,如果題設條件是關于邊的齊次式或是關于內角正弦的齊次式,那么我們可以利用正弦定理化簡該條件,如果題設條件是邊和角的混合關系式,那么我們也可把這種關系式轉化為角的關系式或邊的關系式.19.(1)詳見解析;(2).【解析】
(1)連接,由菱形的性質以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結論.(2)以為原點建平面直角坐標系,求出平面平與平面的法向量,,最后求得二面角的余弦值為.【詳解】解:(1)連結∵,且是的中點,∴∵平面平面,平面平面,∴平面.∵平面,∴又為菱形,且為棱的中點,∴∴.又∵,平面∴平面.(2)由題意有,∵四邊形為菱形,且∴分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標系,設,則設平面的法向量為由,得,令,得取平面的法向量為∴二面角為銳二面角,∴二面角的余弦值為【點睛】處理線面垂直問題時,需要學生對線面垂直的判定定理特別熟悉,運用幾何語言表示出來方才過關,一定要在已知平面中找兩條相交直線與平面外的直線垂直,才可以證得線面垂直,其次考查了學生運用空間向量處理空間中的二面角問題,培養(yǎng)了學生的計算能力和空間想象力.20.(1);(2).【解析】
(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.21.(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯立直線與橢圓方程得到關于的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 北京 裝修合同模板
- 太倉勞動合同模板
- 信托固定收益合同模板
- 各種承包合同范例
- 臨時雇傭個人合同模板
- 外墻鋁板維修合同范例
- 土耳其勞動合同模板
- 土豆餃子買賣合同范例
- 2024年IT產品開發(fā)與代工服務合同
- 2024年城市供水設施改造工程合同
- (統(tǒng)編2024版)道德與法治七上10.1愛護身體 課件
- GB/T 30391-2024花椒
- 供電線路維護合同
- 鞋子工廠供貨合同模板
- 物理人教版2024版八年級上冊5.1 透鏡 課件02
- 2024碼頭租賃合同范本
- 期中測試卷(1-4單元)(試題)-2024-2025學年人教版數學四年級上冊
- 應用文寫作+以“A+Clean-up+Activity”為題給學校英語報寫一篇新聞報道+講義 高二上學期月考英語試題
- 木材采運智能決策支持系統(tǒng)
- 2024年華電電力科學研究院限公司招聘26人歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 校園反詐騙課件
評論
0/150
提交評論