【高三理科數(shù)學(xué)第一輪復(fù)習(xí)】第十一章-第2節(jié)-排列與組合_第1頁
【高三理科數(shù)學(xué)第一輪復(fù)習(xí)】第十一章-第2節(jié)-排列與組合_第2頁
【高三理科數(shù)學(xué)第一輪復(fù)習(xí)】第十一章-第2節(jié)-排列與組合_第3頁
【高三理科數(shù)學(xué)第一輪復(fù)習(xí)】第十一章-第2節(jié)-排列與組合_第4頁
【高三理科數(shù)學(xué)第一輪復(fù)習(xí)】第十一章-第2節(jié)-排列與組合_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第2節(jié)排列與組合最新考綱1.理解排列、組合的概念;2.能利用計數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式;3.能解決簡單的實際問題.知

理1.排列與組合的概念一定的順序名稱定義

排列從n個不同元素中取出m(m≤n)個不同元素按照_____________排成一列組合合成一組2.排列數(shù)與組合數(shù)(1)從n個不同元素中取出m(m≤n)個元素的所有____________的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù).(2)從n個不同元素中取出m(m≤n)個元素的所有____________的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).不同排列不同組合3.排列數(shù)、組合數(shù)的公式及性質(zhì)n(n-1)(n-2)…(n-m+1)1n![微點提醒]1.解受條件限制的排列、組合題,通常有直接法(合理分類)和間接法(排除法).分類時標(biāo)準(zhǔn)應(yīng)統(tǒng)一,避免出現(xiàn)重復(fù)或遺漏.2.對于分配問題,一般先分組,再分配,注意平均分組與不平均分組的區(qū)別,避免重復(fù)或遺漏.基

礎(chǔ)

測1.判斷下列結(jié)論正誤(在括號內(nèi)打“√”或“×”)(1)所有元素完全相同的兩個排列為相同排列.(

)(2)一個組合中取出的元素講究元素的先后順序.(

)答案(1)×

(2)×

(3)×

(4)√

(5)√2.(選修2-3P18例3改編)從4本不同的課外讀物中,買3本送給3名同學(xué),每人各1本,則不同的送法種數(shù)是(

) A.12 B.24

C.64

D.81答案

B答案2104.(2019·福州調(diào)研)6把椅子擺成一排,3人隨機就座,任何兩人不相鄰的坐法種數(shù)為(

) A.144 B.120

C.72

D.24答案D5.(一題多解)(2018·全國Ⅰ卷)從2位女生、4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有________種(用數(shù)字作答).答案

166.(2018·浙江卷)從1,3,5,7,9中任取2個數(shù)字,從0,2,4,6中任取2個數(shù)字,一共可以組成________個沒有重復(fù)數(shù)字的四位數(shù)(用數(shù)字作答).答案

1260考點一排列問題【例1】

有3名男生、4名女生,在下列不同條件下,求不同的排列方法總數(shù).(1)選5人排成一排;(2)排成前后兩排,前排3人,后排4人;(3)全體排成一排,女生必須站在一起;(4)全體排成一排,男生互不相鄰;(5)(一題多解)全體排成一排,其中甲不站最左邊,也不站最右邊;(6)(一題多解)全體排成一排,其中甲不站最左邊,乙不站最右邊.規(guī)律方法

排列應(yīng)用問題的分類與解法(1)對于有限制條件的排列問題,分析問題時有位置分析法、元素分析法,在實際進(jìn)行排列時一般采用特殊元素優(yōu)先原則,即先安排有限制條件的元素或有限制條件的位置,對于分類過多的問題可以采用間接法.(2)對相鄰問題采用捆綁法、不相鄰問題采用插空法、定序問題采用倍縮法是解決有限制條件的排列問題的常用方法.【訓(xùn)練1】

(2019·新余二模)7人站成兩排隊列,前排3人,后排4人,現(xiàn)將甲、乙、丙三人加入隊列,前排加一人,后排加兩人,其他人保持相對位置不變,則不同的加入方法種數(shù)為(

) A.120 B.240

C.360

D.480解析第一步,從甲、乙、丙三人選一個加到前排,有3種,第二步,前排3人形成了4個空,任選一個空加一人,有4種,第三步,后排4人形成了5個空,任選一個空加一人有5種,此時形成6個空,任選一個空加一人,有6種,根據(jù)分步乘法計數(shù)原理有3×4×5×6=360種方法.答案C考點二組合問題【例2】

某市工商局對35種商品進(jìn)行抽樣檢查,已知其中有15種假貨.現(xiàn)從35種商品中選取3種. (1)其中某一種假貨必須在內(nèi),不同的取法有多少種? (2)其中某一種假貨不能在內(nèi),不同的取法有多少種? (3)恰有2種假貨在內(nèi),不同的取法有多少種? (4)至少有2種假貨在內(nèi),不同的取法有多少種? (5)至多有2種假貨在內(nèi),不同的取法有多少種?規(guī)律方法

組合問題常有以下兩類題型變化:(1)“含有”或“不含有”某些元素的組合題型:“含”,則先將這些元素取出,再由另外元素補足;“不含”,則先將這些元素剔除,再從剩下的元素中去選取.(2)“至少”或“至多”含有幾個元素的組合題型:解這類題必須十分重視“至少”與“至多”這兩個關(guān)鍵詞的含義,謹(jǐn)防重復(fù)與漏解.用直接法和間接法都可以求解,通常用直接法分類復(fù)雜時,考慮逆向思維,用間接法處理.【訓(xùn)練2】(1)(一題多解)某班級要從4名男生、2名女生中選派4人參加某次社區(qū)服務(wù),如果要求至少有1名女生,那么不同的選派方案種數(shù)為(

) A.14 B.24 C.28 D.48 (2)(2019·咸陽二模)若從1,2,3,…,9這9個整數(shù)中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法共有(

) A.60種

B.63種

C.65種

D.66種答案(1)A

(2)D考點三分組、分配問題

多維探究角度1整體均分問題【例3-1】

國家教育部為了發(fā)展貧困地區(qū)教育,在全國重點師范大學(xué)免費培養(yǎng)教育專業(yè)師范生,畢業(yè)后要分到相應(yīng)的地區(qū)任教,現(xiàn)有6個免費培養(yǎng)的教育專業(yè)師范畢業(yè)生要平均分到3所學(xué)校去任教,有________種不同的分派方法.答案90角度2部分均分問題【例3-2】

某學(xué)校派出5名優(yōu)秀教師去邊遠(yuǎn)地區(qū)的三所中學(xué)進(jìn)行教學(xué)交流,每所中學(xué)至少派一名教師,則不同的分配方法有(

) A.80種

B.90種

C.120種

D.150種答案D角度3不等分問題【例3-3】

A,B,C,D,E,F(xiàn)六人圍坐在一張圓桌上開會,A是會議的中心發(fā)言人,必須坐最北面的椅子,B,C二人必須坐相鄰的兩把椅子,其余三人坐剩余的三把椅子,則不同的坐法有(

) A.24種

B.30種

C.48種

D.60種答案C【訓(xùn)練3】(1)(2017·全國Ⅱ卷)安排3名志愿者完成4項工作,每人至少完成1項,每項工作由1人完成,則不同的安排方式共有(

) A.12種

B.18種

C.24種

D.36種 (2)在8張獎券中有一、二、三等獎各1張,其余5張無獎.將這8張獎券分配給4個人,每人2張,不同的獲獎情況有________種(用數(shù)字作答).答案(1)D

(2)60[思維升華]1.對于有附加條件的排列、組合應(yīng)用題,通常從三個途徑考慮 (1)以元素為主考慮,即先滿足特殊元素的要求,再考慮其他元素. (2)以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置. (3)先不考慮附加條件,計算出排列數(shù)或組合數(shù),再減去不合要求的排列數(shù)或組合數(shù).2.排列、組合問題的求解方法與技巧 (1)特殊元素優(yōu)先安排;(2)合理分類與準(zhǔn)確分步;(3)排列、組合混合問題先選后排;(4)相鄰問題捆綁處理;(5)不相鄰問題插空處理;(6)定序問題倍除法處理;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論