版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)二自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(30題)1.
2.A.A.0B.1C.-1/sin1D.2
3.若事件A發(fā)生必然導(dǎo)致事件B發(fā)生,則事件A和B的關(guān)系一定是()。A.
B.
C.對立事件
D.互不相容事件
4.設(shè)函數(shù)f(x)在x=1處可導(dǎo),且f(1)=0,若f"(1)>0,則f(1)是()。A.極大值B.極小值C.不是極值D.是拐點
5.函數(shù)f(x)=(x2-1)3+1,在x=1處【】A.有極大值1B.有極小值1C.有極小值0D.無極值
6.
A.cos2B.-cos2C.sin2D.-sin2
7.
8.
9.()。A.
B.
C.
D.
10.
11.
12.
13.A.A.(-1,1)B.(-∞,-1)C.(1,+∞)D.(-∞,+∞)14.【】A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.周期函數(shù)15.函數(shù)f(x)在點x0處有定義,是f(x)在點x0處連續(xù)的()。A.必要條件,但非充分條件B.充分條件,但非必要條件C.充分必要條件D.非充分條件,亦非必要條件16.A.A.
B.
C.
D.
17.A.A.
B.
C.
D.
18.設(shè)y=f(x)二階可導(dǎo),且fˊ(1)=0,f″(1)>0,則必有().A.A.f(1)=0B.f(1)是極小值C.f(1)是極大值D.點(1,f(1))是拐點
19.
20.A.A.1B.1/2C.-1/2D.+∞21.()。A.
B.
C.
D.
22.()。A.0B.1C.2D.3
23.
24.()。A.3B.2C.1D.2/3
25.設(shè)z=xy,則dz=【】
A.yxy-1dx+xylnxdy
B.xy-1dx+ydy
C.xy(dx+dy)
D.xy(xdx+ydy)
26.設(shè)函數(shù)z=x2+y2,2,則點(0,0)().
A.不是駐點B.是駐點但不是極值點C.是駐點且是極大值點D.是駐點且是極小值點27.()。A.
B.
C.
D.
28.
29.()。A.
B.
C.
D.
30.
二、填空題(30題)31.
32.
33.34.曲線y=sin(x+1)在點(-1,0)處的切線斜率為______.35.36.37.
38.
39.
40.
41.
42.
43.
44.若曲線y=x2-αx3/2有一個拐點的橫坐標(biāo)是x=1,則α=_________。
45.
46.
47.已知函數(shù)y的n-2階導(dǎo)數(shù)yn-2=x2cosx,則y(n)=_________。
48.
49.
50.
51.52.
53.
54.
55.
56.曲線y=2x2+3x-26上點M處的切線斜率是15,則點M的坐標(biāo)是_________。
57.曲線y=xlnx-x在x=e處的法線方程為__________.
58.
59.60.三、計算題(30題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.設(shè)曲線y=4-x2(x≥0)與x軸,y軸及直線x=4所圍成的平面圖形為D(如
圖中陰影部分所示).
圖1—3—1
①求D的面積S;
②求圖中x軸上方的陰影部分繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vy.
83.
84.
85.
86.
87.
88.
89.
90.四、綜合題(10題)91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
五、解答題(10題)101.
102.
103.104.
105.
106.求由曲線y=x,y=lnx及y=0,y=1圍成的平面圖形的面積S,并求
此平面圖形繞y軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積Vy.
107.
108.
109.110.六、單選題(0題)111.
參考答案
1.B
2.A
3.A本題考查的知識點是事件關(guān)系的概念.根據(jù)兩個事件相互包含的定義,可知選項A正確。
4.B
5.D
6.D此題暫無解析
7.B
8.A解析:
9.B
10.
11.B解析:
12.A
13.A
14.A
15.A函數(shù)f(x)在X0處有定義不一定在該點連續(xù),故選A。
16.D
17.B
18.B根據(jù)極值的第二充分條件確定選項.
19.A
20.D本題考查的知識點是反常積分收斂和發(fā)散的概念.
21.D因為f'(x)=lnx+1,所以f"(x)=1/x。
22.C
23.D
24.D
25.A
26.D本題考查的知識點是二元函數(shù)的無條件極值.
27.B
28.C
29.B
30.C
31.
32.(2+4x+x2)ex(2+4x+x2)ex
解析:
33.34.1因為y’=cos(x+1),則y’(-1)=1.35.3-e-136.x3+x.
37.
38.e
39.
40.1/21/2解析:
41.B
42.2/3x3/2+2x1/2—In|x|+C
43.
44.8/3
45.C
46.2sinl
47.2cosx-4xsinx-x2cosx
48.
49.
50.
51.52.1/2
53.3/53/5解析:54.0因為x3+3x是奇函數(shù)。
55.
56.(31)57.應(yīng)填x+y-e=0.
先求切線斜率,再由切線與法線互相垂直求出法線斜率,從而得到法線方程.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.90.解法l等式兩邊對x求導(dǎo),得
ey·y’=y+xy’.
解得
91.
92.
所以方程在區(qū)間內(nèi)只有一個實根。
所以,方程在區(qū)間內(nèi)只有一個實根。
93.
94.
95.
96.
97.
98.
99.
所以又上述可知在(01)內(nèi)方程只有唯一的實根。
所以,又上述可知,在(0,1)內(nèi),方程只有唯一的實根。
100.
101.
102.
103.
104.
105.106.本題考查的知識點是曲邊梯形面積的求法及旋轉(zhuǎn)體體積的求法.
首先應(yīng)根據(jù)題目中所給的曲線方程畫出封閉的平面圖形,然后根據(jù)此圖形的特點選擇對x積分還是對),積分.選擇的原則是:使得積分計算盡可能簡單或容易算出.本題如果選擇對x積分,則有
這顯然要比對y積分麻煩.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉首大學(xué)《電工與電子技術(shù)》2021-2022學(xué)年期末試卷
- 《機床夾具設(shè)計》試題14
- 吉林藝術(shù)學(xué)院《影視概念設(shè)計解析》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《視唱Ⅱ》2021-2022學(xué)年第一學(xué)期期末試卷
- 吉林藝術(shù)學(xué)院《和聲Ⅱ》2021-2022學(xué)年第一學(xué)期期末試卷
- 珠海離婚協(xié)議書范文
- 2024年多方合作合同范本
- 吉林師范大學(xué)《信息動畫設(shè)計》2021-2022學(xué)年第一學(xué)期期末試卷
- 2022年公務(wù)員多省聯(lián)考《申論》真題(重慶二卷)及答案解析
- 女婿與女婿離婚協(xié)議書范文模板
- 優(yōu)秀工作總結(jié)范文:閥門專業(yè)技術(shù)工作總結(jié)
- 按鍵外觀及可靠性測試檢驗標(biāo)準(zhǔn)
- 安防監(jiān)控系統(tǒng)室外施工安裝規(guī)范標(biāo)準(zhǔn)
- 胸痛鑒別診斷
- 元明粉比重表
- 房地產(chǎn)估價理論與方法重要公式整理
- 房地產(chǎn)項目投資成本測算參考表
- 提高護士對搶救藥品知曉率PDCA案例精編版
- 大學(xué)英語四級改錯題12篇
- 正余弦定理知識點權(quán)威總結(jié)18頁
- 淺議小升初數(shù)學(xué)教學(xué)銜接
評論
0/150
提交評論