下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖南省常德市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
()A.x2
B.2x2
C.xD.2x
3.設(shè)函數(shù)f(x)在[a,b]上連續(xù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的平面圖形的面積等于()。A.
B.
C.
D.
4.A.
B.
C.e-x
D.
5.
6.
7.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
8.設(shè)f(x)在點x0處取得極值,則()
A.f"(x0)不存在或f"(x0)=0
B.f"(x0)必定不存在
C.f"(x0)必定存在且f"(x0)=0
D.f"(x0)必定存在,不一定為零
9.
10.曲線y=lnx-2在點(e,-1)的切線方程為()A.A.
B.
C.
D.
11.下列關(guān)系式中正確的有()。A.
B.
C.
D.
12.A.A.
B.
C.
D.
13.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π
14.
15.
16.
17.A.A.3B.1C.1/3D.018.已知y=ksin2x的一個原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2
19.
20.
二、填空題(20題)21.若當(dāng)x→0時,2x2與為等價無窮小,則a=______.
22.
23.
24.
25.
26.微分方程y'+4y=0的通解為_________。
27.28.
29.
30.31.32.設(shè)=3,則a=________。33.34.35.36.設(shè)y=,則y=________。
37.
38.
39.
40.
三、計算題(20題)41.
42.證明:43.求曲線在點(1,3)處的切線方程.44.45.46.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.47.
48.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.49.
50.
51.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
52.求微分方程的通解.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.
55.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.56.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
57.將f(x)=e-2X展開為x的冪級數(shù).58.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.
62.
63.
64.
65.
66.求∫xcosx2dx。
67.
68.
69.求y"-2y'=2x的通解.70.五、高等數(shù)學(xué)(0題)71.設(shè)
則∫f(x)dx等于()。
A.2x+c
B.1nx+c
C.
D.
六、解答題(0題)72.
參考答案
1.D解析:
2.A
3.C
4.A
5.C
6.A
7.D可以將方程認(rèn)作可分離變量方程;也可以將方程認(rèn)作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認(rèn)作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認(rèn)作一階線性微分方程.由通解公式可得解法3認(rèn)作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
8.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。
9.B
10.D
11.B本題考查的知識點為定積分的性質(zhì).
由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時,x>x2,因此
可知應(yīng)選B。
12.C
13.C本題考查的知識點為羅爾定理的條件與結(jié)論.
由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.
故知應(yīng)選C.
14.A
15.A解析:
16.C
17.A
18.D本題考查的知識點為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。
19.B
20.C21.6;本題考查的知識點為無窮小階的比較.
當(dāng)于當(dāng)x→0時,2x2與為等價無窮小,因此
可知a=6.
22.23.F(sinx)+C
24.
25.3x2siny3x2siny解析:
26.y=Ce-4x27.-24.
本題考查的知識點為連續(xù)函數(shù)在閉區(qū)間上的最大值.
若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),??梢岳脤?dǎo)數(shù)判定f(x)在[a,b]上的最值:
28.
29.
30.發(fā)散
31.
32.
33.本題考查的知識點為定積分的換元法.
34.
35.
36.
37.
38.
本題考查的知識點為二重積分的計算.
39.
解析:
40.
41.
則
42.
43.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
44.
45.
46.
47.由一階線性微分方程通解公式有
48.函數(shù)的定義域為
注意
49.
50.
51.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
52.
53.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
54.
55.
列表:
說明
56.
57.58.由等價無窮小量的定義可知
59.
60.由二重積分物理意義知
61.
62.
6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度區(qū)塊鏈技術(shù)應(yīng)用軟件許可及安全保障合同3篇
- 二零二五年度智能物流全新員工入職與供應(yīng)鏈優(yōu)化合同3篇
- 二零二五年度農(nóng)村機井承包與農(nóng)村生態(tài)保護修復(fù)合同
- 二零二五年度執(zhí)業(yè)藥師藥品臨床研究合作合同3篇
- 2025年度籃球運動員轉(zhuǎn)會合同附件清單3篇
- 2025年度舞蹈培訓(xùn)機構(gòu)會員卡積分獎勵合同3篇
- 二零二五年度全新出售房屋買賣智能家居環(huán)境凈化系統(tǒng)合同3篇
- 養(yǎng)老機構(gòu)與互聯(lián)網(wǎng)企業(yè)合作提供在線醫(yī)療服務(wù)合同3篇
- 2025年度養(yǎng)生館健康管理平臺合作合同協(xié)議3篇
- 二零二五年度合同公司管理制度與員工激勵機制合同3篇
- 小學(xué)高年級課后服務(wù) scratch3.0編程教學(xué)設(shè)計 一階第27課 植物大戰(zhàn)僵尸-僵尸來襲教學(xué)設(shè)計
- 2024年人民日報社招聘應(yīng)屆高校畢業(yè)生85人筆試高頻難、易錯點500題模擬試題附帶答案詳解
- 中西醫(yī)結(jié)合科工作制度
- 沈鼓集團招聘筆試題庫2024
- 高中人教版必修一全冊歷史期末總復(fù)習(xí)重要知識點歸納
- 2024年網(wǎng)絡(luò)安全知識競賽考試題庫500題(含答案)
- 南平武夷高新技術(shù)產(chǎn)業(yè)控股集團有限公司招聘筆試題庫2024
- 《2024年 基于Python的電影彈幕數(shù)據(jù)分析》范文
- 三支一扶協(xié)議書模板
- 施工現(xiàn)場臨時用電安全監(jiān)理檢查表
- 2024年全國職業(yè)院校技能大賽高職組(護理技能賽項)備賽試題庫(含答案)
評論
0/150
提交評論