湖南省常德市桃源一中2023屆高三下第一次測試數(shù)學(xué)試題含解析_第1頁
湖南省常德市桃源一中2023屆高三下第一次測試數(shù)學(xué)試題含解析_第2頁
湖南省常德市桃源一中2023屆高三下第一次測試數(shù)學(xué)試題含解析_第3頁
湖南省常德市桃源一中2023屆高三下第一次測試數(shù)學(xué)試題含解析_第4頁
湖南省常德市桃源一中2023屆高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知當(dāng),,時,,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定2.設(shè)過拋物線上任意一點(異于原點)的直線與拋物線交于兩點,直線與拋物線的另一個交點為,則()A. B. C. D.3.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.4.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.5.已知三棱錐P﹣ABC的頂點都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,則球O的表面積為()A. B. C. D.6.將4名大學(xué)生分配到3個鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案種數(shù)是()A.18種 B.36種 C.54種 D.72種7.設(shè)等差數(shù)列的前項和為,若,,則()A.21 B.22 C.11 D.128.下列命題是真命題的是()A.若平面,,,滿足,,則;B.命題:,,則:,;C.“命題為真”是“命題為真”的充分不必要條件;D.命題“若,則”的逆否命題為:“若,則”.9.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.10.下列函數(shù)中,既是奇函數(shù),又在上是增函數(shù)的是().A. B.C. D.11.設(shè)為非零向量,則“”是“與共線”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件12.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.如圖,某地一天從時的溫度變化曲線近似滿足函數(shù),則這段曲線的函數(shù)解析式為______________.14.已知中,點是邊的中點,的面積為,則線段的取值范圍是__________.15.某中學(xué)數(shù)學(xué)競賽培訓(xùn)班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學(xué)成績的平均數(shù)為81,乙組5名同學(xué)成績的中位數(shù)為73,則x-y的值為________.16.已知復(fù)數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.18.(12分)數(shù)列滿足,是與的等差中項.(1)證明:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前項和.19.(12分)已知函數(shù).(1)若曲線的切線方程為,求實數(shù)的值;(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.20.(12分)已知f(x)=|x+3|-|x-2|(1)求函數(shù)f(x)的最大值m;(2)正數(shù)a,b,c滿足a+2b+3c=m,求證:21.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)存在零點,求的求值范圍.22.(10分)在本題中,我們把具體如下性質(zhì)的函數(shù)叫做區(qū)間上的閉函數(shù):①的定義域和值域都是;②在上是增函數(shù)或者減函數(shù).(1)若在區(qū)間上是閉函數(shù),求常數(shù)的值;(2)找出所有形如的函數(shù)(都是常數(shù)),使其在區(qū)間上是閉函數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時,根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.2、C【解析】

畫出圖形,將三角形面積比轉(zhuǎn)為線段長度比,進而轉(zhuǎn)為坐標的表達式。寫出直線方程,再聯(lián)立方程組,求得交點坐標,最后代入坐標,求得三角形面積比.【詳解】作圖,設(shè)與的夾角為,則中邊上的高與中邊上的高之比為,,設(shè),則直線,即,與聯(lián)立,解得,從而得到面積比為.故選:【點睛】解決本題主要在于將面積比轉(zhuǎn)化為線段長的比例關(guān)系,進而聯(lián)立方程組求解,是一道不錯的綜合題.3、D【解析】

依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題.4、C【解析】

設(shè)為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【詳解】設(shè)分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.5、D【解析】

由題意畫出圖形,找出△PAB外接圓的圓心及三棱錐P﹣BCD的外接球心O,通過求解三角形求出三棱錐P﹣BCD的外接球的半徑,則答案可求.【詳解】如圖;設(shè)AB的中點為D;∵PA,PB,AB=4,∴△PAB為直角三角形,且斜邊為AB,故其外接圓半徑為:rAB=AD=2;設(shè)外接球球心為O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2?R2=(R)2+r2?R;∴球O的表面積為:4πR2=4π.故選:D.【點睛】本題考查多面體外接球表面積的求法,考查數(shù)形結(jié)合的解題思想方法,考查思維能力與計算能力,屬于中檔題.6、B【解析】

把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn)即得.【詳解】把4名大學(xué)生按人數(shù)分成3組,為1人、1人、2人,再把這三組分配到3個鄉(xiāng)鎮(zhèn),則不同的分配方案有種.故選:.【點睛】本題考查排列組合,屬于基礎(chǔ)題.7、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項.對于等差數(shù)列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計算量大大減少.8、D【解析】

根據(jù)面面關(guān)系判斷A;根據(jù)否定的定義判斷B;根據(jù)充分條件,必要條件的定義判斷C;根據(jù)逆否命題的定義判斷D.【詳解】若平面,,,滿足,,則可能相交,故A錯誤;命題“:,”的否定為:,,故B錯誤;為真,說明至少一個為真命題,則不能推出為真;為真,說明都為真命題,則為真,所以“命題為真”是“命題為真”的必要不充分條件,故C錯誤;命題“若,則”的逆否命題為:“若,則”,故D正確;故選D【點睛】本題主要考查了判斷必要不充分條件,寫出命題的逆否命題等,屬于中檔題.9、C【解析】

利用建系,假設(shè)長度,表示向量與,利用向量的夾角公式,可得結(jié)果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設(shè),所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎(chǔ)題.10、B【解析】

奇函數(shù)滿足定義域關(guān)于原點對稱且,在上即可.【詳解】A:因為定義域為,所以不可能時奇函數(shù),錯誤;B:定義域關(guān)于原點對稱,且滿足奇函數(shù),又,所以在上,正確;C:定義域關(guān)于原點對稱,且滿足奇函數(shù),,在上,因為,所以在上不是增函數(shù),錯誤;D:定義域關(guān)于原點對稱,且,滿足奇函數(shù),在上很明顯存在變號零點,所以在上不是增函數(shù),錯誤;故選:B【點睛】此題考查判斷函數(shù)奇偶性和單調(diào)性,注意奇偶性的前提定義域關(guān)于原點對稱,屬于簡單題目.11、A【解析】

根據(jù)向量共線的性質(zhì)依次判斷充分性和必要性得到答案.【詳解】若,則與共線,且方向相同,充分性;當(dāng)與共線,方向相反時,,故不必要.故選:.【點睛】本題考查了向量共線,充分不必要條件,意在考查學(xué)生的推斷能力.12、B【解析】

設(shè),則,可得,即可得到,進而找到對應(yīng)的點所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點為,在第二象限.故選:B【點睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點所在象限,考查復(fù)數(shù)的模,考查運算能力.二、填空題:本題共4小題,每小題5分,共20分。13、,【解析】

根據(jù)圖象得出該函數(shù)的最大值和最小值,可得,,結(jié)合圖象求得該函數(shù)的最小正周期,可得出,再將點代入函數(shù)解析式,求出的值,即可求得該函數(shù)的解析式.【詳解】由圖象可知,,,,,從題圖中可以看出,從時是函數(shù)的半個周期,則,.又,,得,取,所以,.故答案為:,.【點睛】本題考查由圖象求函數(shù)解析式,考查計算能力,屬于中等題.14、【解析】

設(shè),利用正弦定理,根據(jù),得到①,再利用余弦定理得②,①②平方相加得:,轉(zhuǎn)化為有解問題求解.【詳解】設(shè),所以,即①由余弦定理得,即②,①②平方相加得:,即,令,設(shè),在上有解,所以,解得,即,故答案為:【點睛】本題主要考查正弦定理和余弦定理在平面幾何中的應(yīng)用,還考查了運算求解的能力,屬于難題.15、【解析】

根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據(jù)莖葉圖計算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡單題.16、11【解析】

根據(jù)復(fù)數(shù)運算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運算法則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)定值為0.【解析】

(1)根據(jù)直線方程求焦點坐標,即得c,再根據(jù)離心率得,(2)先設(shè)直線方程以及各點坐標,化簡,再聯(lián)立直線方程與橢圓方程,利用韋達定理代入化簡得結(jié)果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設(shè)直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關(guān)系,考查綜合分析求解能力,屬中檔題.18、(1)見解析,(2)【解析】

(1)根據(jù)等差中項的定義得,然后構(gòu)造新等比數(shù)列,寫出的通項即可求(2)根據(jù)(1)的結(jié)果,分組求和即可【詳解】解:(1)由已知可得,即,可化為,故數(shù)列是以為首項,2為公比的等比數(shù)列.即有,所以.(2)由(1)知,數(shù)列的通項為:,故.【點睛】考查等差中項的定義和分組求和的方法;中檔題.19、(1);(2)或【解析】

(1)根據(jù)解析式求得導(dǎo)函數(shù),設(shè)切點坐標為,結(jié)合導(dǎo)數(shù)的幾何意義可得方程,構(gòu)造函數(shù),并求得,由導(dǎo)函數(shù)求得有最小值,進而可知由唯一零點,即可代入求得的值;(2)將解析式代入,結(jié)合零點定義化簡并分離參數(shù)得,構(gòu)造函數(shù),根據(jù)題意可知直線與曲線有兩個交點;求得并令求得極值點,列出表格判斷的單調(diào)性與極值,即可確定與有兩個交點時的取值范圍.【詳解】(1)依題意,,,設(shè)切點為,,故,故,則;令,,故當(dāng)時,,當(dāng)時,,故當(dāng)時,函數(shù)有最小值,由于,故有唯一實數(shù)根0,即,則;(2)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線在有兩個交點”;由于.由,解得,.當(dāng)變化時,與的變化情況如下表所示:30+0極小值極大值所以在,上單調(diào)遞減,在上單調(diào)遞增.又因為,,,,故當(dāng)或時,直線與曲線在上有兩個交點,即當(dāng)或時,函數(shù)在區(qū)間上有兩個零點.【點睛】本題考查了導(dǎo)數(shù)的幾何意義應(yīng)用,由切線方程求參數(shù)值,構(gòu)造函數(shù)法求參數(shù)的取值范圍,函數(shù)零點的意義及綜合應(yīng)用,屬于難題.20、(1)(2)見解析【解析】

(1)利用絕對值三角不等式求得的最大值.(2)由(1)得.方法一,利用柯西不等式證得不等式成立;方法二,利用“的代換”的方法,結(jié)合基本不等式證得不等式成立.【詳解】(1)由絕對值不等式性質(zhì)得當(dāng)且僅當(dāng)即時等號成立,所以(2)由(1)得.法1:由柯西不等式得當(dāng)且僅當(dāng)時等號成立,即,所以.法2:由得,,當(dāng)且僅當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論