湖南省常德市石門一中2023屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第1頁
湖南省常德市石門一中2023屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第2頁
湖南省常德市石門一中2023屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第3頁
湖南省常德市石門一中2023屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第4頁
湖南省常德市石門一中2023屆高三第一次調(diào)研測試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-22.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.3.二項式的展開式中,常數(shù)項為()A. B.80 C. D.1604.已知直線:過雙曲線的一個焦點且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.5.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.6.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.7.已知集合,,則等于()A. B. C. D.8.已知展開式的二項式系數(shù)和與展開式中常數(shù)項相等,則項系數(shù)為()A.10 B.32 C.40 D.809.若的展開式中的系數(shù)為-45,則實數(shù)的值為()A. B.2 C. D.10.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.11.已知定點都在平面內(nèi),定點是內(nèi)異于的動點,且,那么動點在平面內(nèi)的軌跡是()A.圓,但要去掉兩個點 B.橢圓,但要去掉兩個點C.雙曲線,但要去掉兩個點 D.拋物線,但要去掉兩個點12.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進(jìn)部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________14.若,則=______,=______.15.已知,滿足約束條件,則的最小值為__________.16.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等腰梯形中(如圖1),,,為線段的中點,、為線段上的點,,現(xiàn)將四邊形沿折起(如圖2)(1)求證:平面;(2)在圖2中,若,求直線與平面所成角的正弦值.18.(12分)已知橢圓()的離心率為,且經(jīng)過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關(guān)于軸對稱?若存在,求出點的坐標(biāo);若不存在,說明理由.19.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點.(1)求證:平面平面;(2)點在線段上,且,求平面與平面所成的銳二面角的余弦值.20.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.21.(12分)在中,角A,B,C的對邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長度.22.(10分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當(dāng)時,有最大值,當(dāng)時,有最小值.故選:B.【點睛】本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.2、A【解析】

由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質(zhì)——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個條件得到關(guān)于a,b,c的齊次式,轉(zhuǎn)化為a,c的齊次式,然后轉(zhuǎn)化為關(guān)于e的方程,即可得3、A【解析】

求出二項式的展開式的通式,再令的次數(shù)為零,可得結(jié)果.【詳解】解:二項式展開式的通式為,令,解得,則常數(shù)項為.故選:A.【點睛】本題考查二項式定理指定項的求解,關(guān)鍵是熟練應(yīng)用二項展開式的通式,是基礎(chǔ)題.4、A【解析】

根據(jù)直線:過雙曲線的一個焦點,得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因為直線:過雙曲線的一個焦點,所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.5、B【解析】

解:當(dāng)直線過點時,最大,故選B6、B【解析】

取的中點,連接、,推導(dǎo)出,設(shè)設(shè)球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設(shè)球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結(jié)構(gòu),找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.7、B【解析】

解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.【點睛】本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.8、D【解析】

根據(jù)二項式定理通項公式可得常數(shù)項,然后二項式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項為又展開式的二項式系數(shù)和為由所以當(dāng)時,所以項系數(shù)為故選:D【點睛】本題考查二項式定理通項公式,熟悉公式,細(xì)心計算,屬基礎(chǔ)題.9、D【解析】

將多項式的乘法式展開,結(jié)合二項式定理展開式通項,即可求得的值.【詳解】∵所以展開式中的系數(shù)為,∴解得.故選:D.【點睛】本題考查了二項式定理展開式通項的簡單應(yīng)用,指定項系數(shù)的求法,屬于基礎(chǔ)題.10、B【解析】

利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.11、A【解析】

根據(jù)題意可得,即知C在以AB為直徑的圓上.【詳解】,,,又,,平面,又平面,故在以為直徑的圓上,又是內(nèi)異于的動點,所以的軌跡是圓,但要去掉兩個點A,B故選:A【點睛】本題主要考查了線面垂直、線線垂直的判定,圓的性質(zhì),軌跡問題,屬于中檔題.12、A【解析】

詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進(jìn)去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意畫出圖形,設(shè),利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設(shè),由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關(guān)系的應(yīng)用,以及三角形相似的應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與運算能力,屬于基礎(chǔ)題.14、10【解析】

①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0【點睛】此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.15、【解析】

作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點處取最小值為.故答案為:【點睛】本題考查簡單線性規(guī)劃的最值,考查數(shù)形結(jié)合思想,考查運算求解能力,屬于基礎(chǔ)題.16、7.5【解析】

分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)先連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)在圖2中,過點作,垂足為,連接,,證明平面平面,得到點在底面上的投影必落在直線上,記為點在底面上的投影,連接,,得出即是直線與平面所成角,再由題中數(shù)據(jù)求解,即可得出結(jié)果.【詳解】(1)連接,因為等腰梯形中(如圖1),,,所以與平行且相等,即四邊形為平行四邊形;所以;又為線段的中點,為中點,易得:四邊形也為平行四邊形,所以;將四邊形沿折起后,平行關(guān)系沒有變化,仍有:,且,所以翻折后四邊形也為平行四邊形;故;因為平面,平面,所以平面;(2)在圖2中,過點作,垂足為,連接,,因為,,翻折前梯形的高為,所以,則,;所以;又,,所以,即,所以;又,且平面,平面,所以平面;因此,平面平面;所以點在底面上的投影必落在直線上;記為點在底面上的投影,連接,,則平面;所以即是直線與平面所成角,因為,所以,因此,,故;因為,所以,因此,故,所以.即直線與平面所成角的正弦值為.【點睛】本題主要考查證明線面平行,以及求直線與平面所成的角,熟記線面平行的判定定理,以及線面角的求法即可,屬于常考題型.18、(1)(2)見解析【解析】

(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關(guān)于軸對稱.設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.設(shè),,定點.(依題意則由韋達(dá)定理可得,,.直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立.特別地,當(dāng)直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關(guān)于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關(guān)系,熟記橢圓方程簡單性質(zhì),熟練轉(zhuǎn)化題目條件,準(zhǔn)確計算是關(guān)鍵,是中檔題.19、(1)見解析(2)【解析】

(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點,∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)存在;詳見解析(2)【解析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長,寫出各點坐標(biāo),用向量法求二面角.【詳解】解:(1)當(dāng)為上靠近點的三等分點時,滿足面.證明如下,取中點,連結(jié).即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.21、(1)(2)【解析】

(1)根據(jù)共線得到,利用正弦定理化簡得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.22、(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據(jù)體積公式剩余部分的體

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論