湖南省永州市重點(diǎn)中學(xué)2023年高考數(shù)學(xué)必刷試卷含解析_第1頁
湖南省永州市重點(diǎn)中學(xué)2023年高考數(shù)學(xué)必刷試卷含解析_第2頁
湖南省永州市重點(diǎn)中學(xué)2023年高考數(shù)學(xué)必刷試卷含解析_第3頁
湖南省永州市重點(diǎn)中學(xué)2023年高考數(shù)學(xué)必刷試卷含解析_第4頁
湖南省永州市重點(diǎn)中學(xué)2023年高考數(shù)學(xué)必刷試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱柱的所有棱長均相等,側(cè)棱平面,過作平面與平行,設(shè)平面與平面的交線為,記直線與直線所成銳角分別為,則這三個(gè)角的大小關(guān)系為()A. B.C. D.2.某高中高三(1)班為了沖刺高考,營造良好的學(xué)習(xí)氛圍,向班內(nèi)同學(xué)征集書法作品貼在班內(nèi)墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細(xì)節(jié)決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進(jìn)行了問話,得到回復(fù)如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細(xì)節(jié)決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李3.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.124.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.5.已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯(cuò)誤的是()A.該超市2018年的12個(gè)月中的7月份的收益最高B.該超市2018年的12個(gè)月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元6.若復(fù)數(shù),則()A. B. C. D.207.甲在微信群中發(fā)了一個(gè)6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則乙獲得“最佳手氣”(即乙領(lǐng)到的錢數(shù)多于其他任何人)的概率是()A. B. C. D.8.已知向量,,若,則()A. B. C.-8 D.89.已知等差數(shù)列的前n項(xiàng)和為,且,則()A.4 B.8 C.16 D.210.已知函數(shù),,若對任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.511.公比為2的等比數(shù)列中存在兩項(xiàng),,滿足,則的最小值為()A. B. C. D.12.一個(gè)正四棱錐形骨架的底邊邊長為,高為,有一個(gè)球的表面與這個(gè)正四棱錐的每個(gè)邊都相切,則該球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等邊三角形的邊長為1.,點(diǎn)、分別為線段、上的動(dòng)點(diǎn),則取值的集合為__________.14.設(shè)集合,,則____________.15.在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面,所在平面內(nèi)的動(dòng)點(diǎn),且滿足,則三棱錐的體積的最大值是__________.16.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)對于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)18.(12分)設(shè)數(shù)列,其前項(xiàng)和,又單調(diào)遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前n項(xiàng)和,并求證:.19.(12分)已知矩陣的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.20.(12分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.21.(12分)已知函數(shù)f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范圍;(Ⅱ)若a<0,對?x,y∈-∞,a,都有不等式f(x)≤(y+2020)+22.(10分)已知橢圓的上頂點(diǎn)為,圓與軸的正半軸交于點(diǎn),與有且僅有兩個(gè)交點(diǎn)且都在軸上,(為坐標(biāo)原點(diǎn)).(1)求橢圓的方程;(2)已知點(diǎn),不過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),證明:直線與直線的斜率互為相反數(shù).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

利用圖形作出空間中兩直線所成的角,然后利用余弦定理求解即可.【詳解】如圖,,設(shè)為的中點(diǎn),為的中點(diǎn),由圖可知過且與平行的平面為平面,所以直線即為直線,由題易知,的補(bǔ)角,分別為,設(shè)三棱柱的棱長為2,在中,,;在中,,;在中,,,.故選:B【點(diǎn)睛】本題主要考查了空間中兩直線所成角的計(jì)算,考查了學(xué)生的作圖,用圖能力,體現(xiàn)了學(xué)生直觀想象的核心素養(yǎng).2、D【解析】

根據(jù)題意,分別假設(shè)一個(gè)正確,推理出與假設(shè)不矛盾,即可得出結(jié)論.【詳解】解:由題意知,若只有小王的說法正確,則小王對應(yīng)“入班即靜”,而否定小董說法后得出:小王對應(yīng)“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應(yīng)“天道酬勤”,否定小李的說法后得出:小李對應(yīng)“細(xì)節(jié)決定成敗”,所以剩下小王對應(yīng)“入班即靜”,但與小王的錯(cuò)誤的說法矛盾;若小李的說法正確,則“細(xì)節(jié)決定成敗”不是小李的,則否定小董的說法得出:小王對應(yīng)“天道酬勤”,所以得出“細(xì)節(jié)決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【點(diǎn)睛】本題考查推理證明的實(shí)際應(yīng)用.3、A【解析】

由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來,繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.4、D【解析】

圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)?,不關(guān)于原點(diǎn)對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對稱.5、D【解析】

用收入減去支出,求得每月收益,然后對選項(xiàng)逐一分析,由此判斷出說法錯(cuò)誤的選項(xiàng).【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項(xiàng)說法正確;月收益最低,B選項(xiàng)說法正確;月總收益萬元,月總收益萬元,所以前個(gè)月收益低于后六個(gè)月收益,C選項(xiàng)說法正確,后個(gè)月收益比前個(gè)月收益增長萬元,所以D選項(xiàng)說法錯(cuò)誤.故選D.【點(diǎn)睛】本小題主要考查圖表分析,考查收益的計(jì)算方法,屬于基礎(chǔ)題.6、B【解析】

化簡得到,再計(jì)算模長得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,復(fù)數(shù)的模,意在考查學(xué)生的計(jì)算能力.7、B【解析】

將所有可能的情況全部枚舉出來,再根據(jù)古典概型的方法求解即可.【詳解】設(shè)乙,丙,丁分別領(lǐng)到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個(gè),其中符合乙獲得“最佳手氣”的有3個(gè),故所求概率為,故選:B.【點(diǎn)睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎(chǔ)題型.8、B【解析】

先求出向量,的坐標(biāo),然后由可求出參數(shù)的值.【詳解】由向量,,則,,又,則,解得.故選:B【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算和模長的運(yùn)算,屬于基礎(chǔ)題.9、A【解析】

利用等差的求和公式和等差數(shù)列的性質(zhì)即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查等差數(shù)列的求和公式和等差數(shù)列的性質(zhì),考查基本量的計(jì)算,難度容易.10、A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.,將代入得:,,且,故選:A【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.11、D【解析】

根據(jù)已知條件和等比數(shù)列的通項(xiàng)公式,求出關(guān)系,即可求解.【詳解】,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,最小值為.故選:D.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式,注意為正整數(shù),如用基本不等式要注意能否取到等號(hào),屬于基礎(chǔ)題.12、B【解析】

根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因?yàn)檎睦忮F底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點(diǎn)睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意建立平面直角坐標(biāo)系,設(shè)三角形各點(diǎn)的坐標(biāo),依題意求出,,,的表達(dá)式,再進(jìn)行數(shù)量積的運(yùn)算,最后求和即可得出結(jié)果.【詳解】解:以的中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,線段的垂直平分線為軸建立平面直角坐標(biāo)系,如圖所示,則,,,,則,,,設(shè),,,即點(diǎn)的坐標(biāo)為,則,,,所以故答案為:【點(diǎn)睛】本題考查平面向量的坐標(biāo)表示和線性運(yùn)算,以及平面向量基本定理和數(shù)量積的運(yùn)算,是中檔題.14、【解析】

先解不等式,再求交集的定義求解即可.【詳解】由題,因?yàn)?解得,即,則,故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查解一元二次不等式.15、【解析】

根據(jù)與相似,,過作于,利用體積公式求解OP最值,根據(jù)勾股定理得出,,利用函數(shù)單調(diào)性判斷求解即可.【詳解】∵在棱長為6的正方體中,是的中點(diǎn),點(diǎn)是面所在平面內(nèi)的動(dòng)點(diǎn),且滿足,又,∴與相似∴,即,過作于,設(shè),,∴,化簡得:,,根據(jù)函數(shù)單調(diào)性判斷,時(shí),取得最大值36,,在正方體中平面.三棱錐體積的最大值為【點(diǎn)睛】本題考查三角形相似,幾何體體積以及函數(shù)單調(diào)性的綜合應(yīng)用,難度一般.16、等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時(shí),,為奇數(shù)時(shí),;(Ⅲ)證明見解析,,【解析】

(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當(dāng)為偶數(shù)時(shí),最大為,當(dāng)為奇數(shù)時(shí),最大為,得到答案.(Ⅲ)討論當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故,當(dāng)為偶數(shù)時(shí),根據(jù)對應(yīng)關(guān)系得到,再計(jì)算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當(dāng)為偶數(shù)時(shí),時(shí),最大為;當(dāng)為奇數(shù)時(shí),時(shí),最大為;綜上所述:為偶數(shù),最大為,為奇數(shù)時(shí),最大為.(Ⅲ)當(dāng)為奇數(shù)時(shí),,至少存在一個(gè)全為1的拆分,故;當(dāng)為偶數(shù)時(shí),設(shè)是每個(gè)數(shù)均為偶數(shù)的“正整數(shù)分拆”,則它至少對應(yīng)了和的均為奇數(shù)的“正整數(shù)分拆”,故.綜上所述:.當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,奇數(shù)“正整數(shù)分拆”為,;當(dāng)時(shí),偶數(shù)“正整數(shù)分拆”為,,奇數(shù)“正整數(shù)分拆”為,故;當(dāng)時(shí),對于偶數(shù)“正整數(shù)分拆”,除了各項(xiàng)不全為的奇數(shù)拆分外,至少多出一項(xiàng)各項(xiàng)均為的“正整數(shù)分拆”,故.綜上所述:使成立的為:或.【點(diǎn)睛】本土考查了數(shù)列的新定義問題,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.18、(1),;(2)詳見解析.【解析】

(1)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),也滿足,∴,∵等比數(shù)列,∴,∴,又∵,∴或(舍去),∴;(2)由(1)可得:,∴,顯然數(shù)列是遞增數(shù)列,∴,即.)19、另一個(gè)特征值為,對應(yīng)的一個(gè)特征向量【解析】

根據(jù)特征多項(xiàng)式的一個(gè)零點(diǎn)為3,可得,再回代到方程即可解出另一個(gè)特征值為,最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個(gè)特征向量.【詳解】矩陣的特征多項(xiàng)式為:,是方程的一個(gè)根,,解得,即方程即,,可得另一個(gè)特征值為:,設(shè)對應(yīng)的一個(gè)特征向量為:則由,得得,令,則,所以矩陣另一個(gè)特征值為,對應(yīng)的一個(gè)特征向量【點(diǎn)睛】本題考查了矩陣的特征值以及特征向量,需掌握特征多項(xiàng)式的計(jì)算形式,屬于基礎(chǔ)題.20、(1)p=2;(2)見解析(3)見解析【解析】

(1)取n=1時(shí),由得p=0或2,計(jì)算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計(jì)算化簡得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計(jì)算得到k=1,得到答案.【詳解】(1)n=1時(shí),由得p=0或2,若p=0時(shí),,當(dāng)n=2時(shí),,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當(dāng)p=2時(shí),①,則②,②﹣①并化簡得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因?yàn)?,所以?shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),又,所以,化簡得2x﹣2y﹣2=1,顯然x>y﹣2,設(shè)k=x﹣(y﹣2),因?yàn)閤、y均為整數(shù),所以當(dāng)k≥2時(shí),2x﹣2y﹣2>1或2x﹣2y﹣2<1,故當(dāng)k=1,且當(dāng)x=1,且y﹣2=0時(shí)上式成立,即證.【點(diǎn)睛】本題考查了根據(jù)數(shù)列求參數(shù),證明等比數(shù)列,充要條件,意在考查學(xué)生的綜合應(yīng)用能力.21、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】

(Ⅰ)由題意不等式化為|1-2a|-|1-a|>1,利用分類討論法去掉絕對值求出不等式的解集即可;(Ⅱ)由題意把問題轉(zhuǎn)化為[f(x)]max≤[|y+2020|+|y-a|]min,分別求出【詳解】(Ⅰ)由題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論