版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是邊長(zhǎng)為1的等邊三角形,點(diǎn),分別是邊,的中點(diǎn),連接并延長(zhǎng)到點(diǎn),使得,則的值為()A. B. C. D.2.已知雙曲線的右焦點(diǎn)為,過的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.3.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}4.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.5.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.6.在中,,,,點(diǎn),分別在線段,上,且,,則().A. B. C.4 D.97.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.18.設(shè)且,則下列不等式成立的是()A. B. C. D.9.已知,,,若,則()A. B. C. D.10.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.128011.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.設(shè),,則的值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為__________.14.已知實(shí)數(shù)滿約束條件,則的最大值為___________.15.設(shè),分別是定義在上的奇函數(shù)和偶函數(shù),且,則_________16.已知的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,則展開式所有項(xiàng)系數(shù)之和為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明18.(12分)棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于311的為“長(zhǎng)纖維”,其余為“短纖維”)纖維長(zhǎng)度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過1.125的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長(zhǎng)纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.19.(12分)已知函數(shù).(1)求的極值;(2)若,且,證明:.20.(12分)如圖,在四棱錐中,側(cè)棱底面,,,,,是棱中點(diǎn).(1)已知點(diǎn)在棱上,且平面平面,試確定點(diǎn)的位置并說明理由;(2)設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),當(dāng)點(diǎn)在何處時(shí),直線與平面所成角最大?并求最大角的正弦值.21.(12分)記無窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.22.(10分)在中,a,b,c分別是角A,B,C的對(duì)邊,并且.(1)已知_______________,計(jì)算的面積;請(qǐng)①,②,③這三個(gè)條件中任選兩個(gè),將問題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計(jì)分.(2)求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),,作為一個(gè)基底,表示向量,,,然后再用數(shù)量積公式求解.【詳解】設(shè),,所以,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的基本運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.2、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.3、C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.【點(diǎn)睛】本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.4、D【解析】
確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.5、D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個(gè)公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對(duì)稱點(diǎn)在上,即曲線與有兩個(gè)公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí)取得極大值,也即為最大值,當(dāng)時(shí),;當(dāng)時(shí),,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.6、B【解析】
根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B【點(diǎn)睛】此題考查余弦定理和向量的數(shù)量積運(yùn)算,掌握基本概念和公式即可解決,屬于簡(jiǎn)單題目.7、C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡(jiǎn)單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.8、A【解析】項(xiàng),由得到,則,故項(xiàng)正確;項(xiàng),當(dāng)時(shí),該不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤;項(xiàng),當(dāng),時(shí),,即不等式不成立,故項(xiàng)錯(cuò)誤.綜上所述,故選.9、B【解析】
由平行求出參數(shù),再由數(shù)量積的坐標(biāo)運(yùn)算計(jì)算.【詳解】由,得,則,,,所以.故選:B.【點(diǎn)睛】本題考查向量平行的坐標(biāo)表示,考查數(shù)量積的坐標(biāo)運(yùn)算,掌握向量數(shù)量積的坐標(biāo)運(yùn)算是解題關(guān)鍵.10、A【解析】
根據(jù)二項(xiàng)式展開式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).11、D【解析】
根據(jù)題意,對(duì)于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個(gè)式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).12、D【解析】
利用倍角公式求得的值,利用誘導(dǎo)公式求得的值,利用同角三角函數(shù)關(guān)系式求得的值,進(jìn)而求得的值,最后利用正切差角公式求得結(jié)果.【詳解】,,,,,,,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)求值問題,涉及到的知識(shí)點(diǎn)有誘導(dǎo)公式,正切倍角公式,同角三角函數(shù)關(guān)系式,正切差角公式,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:【點(diǎn)睛】本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.14、8【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【詳解】根據(jù)約束條件,畫出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過點(diǎn)時(shí)截距最大,故的最大值為8.故答案為:.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.15、1【解析】
令,結(jié)合函數(shù)的奇偶性,求得,即可求解的值,得到答案.【詳解】由題意,函數(shù)分別是上的奇函數(shù)和偶函數(shù),且,令,可得,所以.故答案為:1.【點(diǎn)睛】本題主要考查了函數(shù)奇偶性的應(yīng)用,其中解答中熟記函數(shù)的奇偶性,合理賦值求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、64【解析】
由題意先求得的值,再令求出展開式中所有項(xiàng)的系數(shù)和.【詳解】的展開式中項(xiàng)的系數(shù)與項(xiàng)的系數(shù)分別為135與,,,由兩式可組成方程組,解得或,令,求得展開式中所有的系數(shù)之和為.故答案為:64【點(diǎn)睛】本題考查了二項(xiàng)式定理,考查了賦值法求多項(xiàng)式展開式的系數(shù)和,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)在區(qū)間單調(diào)遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)椋?,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)椋?,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等主要方法有兩個(gè),一是比較簡(jiǎn)單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點(diǎn),結(jié)合已解答的問題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.18、(1)在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(2)見解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識(shí)可作出判斷;(2)寫出的所有可能取值,并求出對(duì)應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計(jì)長(zhǎng)纖維91625短纖維11415總計(jì)212141根據(jù)列聯(lián)表中的數(shù)據(jù),可得所以,在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.19、(1)極大值為;極小值為;(2)見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),進(jìn)而可求出單調(diào)性,從而可求出函數(shù)的極值;(2)構(gòu)造函數(shù),求導(dǎo)并判斷單調(diào)性可得,從而在上恒成立,再結(jié)合,,可得到,即可證明結(jié)論成立.【詳解】(1)函數(shù)的定義域?yàn)?,所以當(dāng)時(shí),;當(dāng)時(shí),,則的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.故的極大值為;的極小值為.(2)證明:由(1)知,設(shè)函數(shù),則,,則在上恒成立,即在上單調(diào)遞增,故,又,則,即在上恒成立.因?yàn)?所以,又,則,因?yàn)?且在上單調(diào)遞減,所以,故.【點(diǎn)睛】本題考查函數(shù)的單調(diào)性與極值,考查了利用導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)是解決本題的關(guān)鍵,屬于難題.20、(1)為中點(diǎn),理由見解析;(2)當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【解析】
(1)為中點(diǎn),可利用中位線與平行四邊形性質(zhì)證明,,從而證明平面平面;(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系,利用向量法求出當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,并可求出最大角的正弦值.【詳解】(1)為中點(diǎn),證明如下:分別為中點(diǎn),又平面平面平面又,且四邊形為平行四邊形,同理,平面,又平面平面(2)以A為原點(diǎn),分別以,,所在直線為、、軸建立空間直角坐標(biāo)系則,設(shè)直線與平面所成角為,則取平面的法向量為則令,則所以當(dāng)時(shí),等號(hào)成立即當(dāng)點(diǎn)在線段靠近的三等分點(diǎn)時(shí),直線與平面所成角最大,最大角的正弦值.【點(diǎn)睛】本題主要考查了平面與平面的平行,直線與平面所成角的求解,考查了學(xué)生的直觀想象與運(yùn)算求解能力.21、(1)(2)證明見解析(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 5.3 人體內(nèi)物質(zhì)的運(yùn)輸
- 辦公場(chǎng)所與設(shè)施維護(hù)管理制度
- 企業(yè)商標(biāo)管理制度
- 急救醫(yī)療流程規(guī)范制度
- 算法設(shè)計(jì)與分析 課件 10.3.3-綜合應(yīng)用-最短路徑問題-貝爾曼福特算法
- 2024年來賓道路客運(yùn)從業(yè)資格證考試模擬試題
- 2024年西安客運(yùn)從業(yè)資格證考試考什么題型
- 2024年杭州客運(yùn)急救知識(shí)
- 2024年重慶客運(yùn)從業(yè)資格證實(shí)際操作試題答案解析
- 吉林藝術(shù)學(xué)院《中外動(dòng)畫史》2021-2022學(xué)年第一學(xué)期期末試卷
- 水利樞紐工程機(jī)組啟動(dòng)試運(yùn)行工作報(bào)告
- 對(duì)比劑相關(guān)的急性腎損傷
- 消毒記錄臺(tái)賬
- 伏安法和電位溶出法
- 隨機(jī)過程教學(xué)大綱
- 費(fèi)曼學(xué)習(xí)法PPT課件
- 植生孔技術(shù)專項(xiàng)施工方案.doc
- 工程結(jié)算書(完整版)
- 常用鋼材磁特性曲線
- 淺談地鐵通信系統(tǒng)漏纜施工
- 機(jī)器人學(xué)_機(jī)器人雅可比矩陣
評(píng)論
0/150
提交評(píng)論