版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如果實(shí)數(shù)滿足條件,那么的最大值為()A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若點(diǎn)(2,k)到直線5x-12y+6=0的距離是4,則k的值是()A.1 B.-3 C.1或 D.-3或4.設(shè)曲線在點(diǎn)處的切線方程為,則()A.1 B.2 C.3 D.45.已知變量,滿足不等式組,則的最小值為()A. B. C. D.6.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.67.已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù))有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.8.已知是虛數(shù)單位,若,,則實(shí)數(shù)()A.或 B.-1或1 C.1 D.9.直線l過(guò)拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.710.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.111.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.312.已知復(fù)數(shù)滿足,則的值為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù)滿約束條件,則的最大值為_(kāi)__________.14.已知拋物線,點(diǎn)為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為,則線段長(zhǎng)度的取值范圍為_(kāi)_________.15.將一顆質(zhì)地均勻的正方體骰子(每個(gè)面上分別寫(xiě)有數(shù)字1,2,3,4,5,6)先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是6的的概率是___.16.若直線與直線交于點(diǎn),則長(zhǎng)度的最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.18.(12分)某房地產(chǎn)開(kāi)發(fā)商在其開(kāi)發(fā)的某小區(qū)前修建了一個(gè)弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開(kāi)發(fā)商計(jì)劃從點(diǎn)出發(fā)建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設(shè).(1)用表示線段并確定的范圍;(2)為了使小區(qū)居民可以充分地欣賞湖景,所以要將的長(zhǎng)度設(shè)計(jì)到最長(zhǎng),求的最大值.19.(12分)“綠水青山就是金山銀山”,為推廣生態(tài)環(huán)境保護(hù)意識(shí),高二一班組織了環(huán)境保護(hù)興趣小組,分為兩組,討論學(xué)習(xí).甲組一共有人,其中男生人,女生人,乙組一共有人,其中男生人,女生人,現(xiàn)要從這人的兩個(gè)興趣小組中抽出人參加學(xué)校的環(huán)保知識(shí)競(jìng)賽.(1)設(shè)事件為“選出的這個(gè)人中要求兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須來(lái)自不同的組”,求事件發(fā)生的概率;(2)用表示抽取的人中乙組女生的人數(shù),求隨機(jī)變量的分布列和期望20.(12分)已知,,,,證明:(1);(2).21.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說(shuō)明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.22.(10分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,.(1)證明:平面平面ABCD;(2)設(shè)H在AC上,,若,求PH與平面PBC所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
解:當(dāng)直線過(guò)點(diǎn)時(shí),最大,故選B2、C【解析】
化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.3、D【解析】
由題得,解方程即得k的值.【詳解】由題得,解方程即得k=-3或.故答案為:D【點(diǎn)睛】(1)本題主要考查點(diǎn)到直線的距離公式,意在考查學(xué)生對(duì)該知識(shí)的掌握水平和計(jì)算推理能力.(2)點(diǎn)到直線的距離.4、D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因?yàn)?,且在點(diǎn)處的切線的斜率為3,所以,即.故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查運(yùn)算求解能力,是基礎(chǔ)題5、B【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫(huà)出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.6、B【解析】
利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、B【解析】
求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點(diǎn)存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴在上只有一個(gè)極大值也是最大值,顯然時(shí),,時(shí),,因此要使函數(shù)有兩個(gè)零點(diǎn),則,∴.故選:B.【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點(diǎn)存在定理確定參數(shù)范圍.8、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬于基礎(chǔ)題9、B【解析】
根據(jù)拋物線中過(guò)焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過(guò)拋物線的焦點(diǎn),由過(guò)拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長(zhǎng)度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡(jiǎn)單應(yīng)用,基本不等式的用法,屬于中檔題.10、A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.11、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).12、C【解析】
由復(fù)數(shù)的除法運(yùn)算整理已知求得復(fù)數(shù)z,進(jìn)而求得其模.【詳解】因?yàn)椋怨蔬x:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算與求復(fù)數(shù)的模,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、8【解析】
畫(huà)出可行域和目標(biāo)函數(shù),根據(jù)平移計(jì)算得到答案.【詳解】根據(jù)約束條件,畫(huà)出可行域,圖中陰影部分為可行域.又目標(biāo)函數(shù)表示直線在軸上的截距,由圖可知當(dāng)經(jīng)過(guò)點(diǎn)時(shí)截距最大,故的最大值為8.故答案為:.【點(diǎn)睛】本題考查了線性規(guī)劃問(wèn)題,畫(huà)出圖像是解題的關(guān)鍵.14、【解析】
連接,易得,可得四邊形的面積為,從而可得,進(jìn)而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當(dāng)最小時(shí),最小,設(shè)點(diǎn),則,所以當(dāng)時(shí),,則,當(dāng)點(diǎn)的橫坐標(biāo)時(shí),,此時(shí),因?yàn)殡S著的增大而增大,所以的取值范圍為.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的應(yīng)用,考查拋物線上的動(dòng)點(diǎn)到定點(diǎn)的距離的求法,考查學(xué)生的計(jì)算求解能力,屬于中檔題.15、【解析】
先求出基本事件總數(shù)6×6=36,再由列舉法求出“點(diǎn)數(shù)之和等于6”包含的基本事件的個(gè)數(shù),由此能求出“點(diǎn)數(shù)之和等于6”的概率.【詳解】基本事件總數(shù)6×6=36,點(diǎn)數(shù)之和是6包括共5種情況,則所求概率是.故答案為【點(diǎn)睛】本題考查古典概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.16、【解析】
根據(jù)題意可知,直線與直線分別過(guò)定點(diǎn),且這兩條直線互相垂直,由此可知,其交點(diǎn)在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【詳解】由題可知,直線可化為,所以其過(guò)定點(diǎn),直線可化為,所以其過(guò)定點(diǎn),且滿足,所以直線與直線互相垂直,其交點(diǎn)在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因?yàn)闉榫€段的中點(diǎn),所以由中點(diǎn)坐標(biāo)公式可得,所以線段的最大值為.故答案為:【點(diǎn)睛】本題考查過(guò)交點(diǎn)的直線系方程、動(dòng)點(diǎn)的軌跡問(wèn)題及點(diǎn)與圓的位置關(guān)系;考查數(shù)形結(jié)合思想和運(yùn)算求解能力;根據(jù)圓的定義得到交點(diǎn)在以為直徑的圓上是求解本題的關(guān)鍵;屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、解:設(shè)特征向量為α=對(duì)應(yīng)的特征值為λ,則=λ,即因?yàn)閗≠0,所以a=2.5分因?yàn)椋訟=,即=,所以2+k=3,解得k=2.綜上,a=2,k=2.20分【解析】試題分析:由特征向量求矩陣A,由逆矩陣求k考點(diǎn):特征向量,逆矩陣點(diǎn)評(píng):本題主要考查了二階矩陣,以及特征值與特征向量的計(jì)算,考查逆矩陣.18、(1),;(2)米.【解析】
(1)過(guò)點(diǎn)作于點(diǎn)再在中利用正弦定理求解,再根據(jù)求解,進(jìn)而求得.再根據(jù)確定的范圍即可.(2)根據(jù)(1)有,再設(shè),求導(dǎo)分析函數(shù)的單調(diào)性與最值即可.【詳解】解:過(guò)點(diǎn)作于點(diǎn)則,在中,,,由正弦定理得:,,,,,因?yàn)?化簡(jiǎn)得,令,,且,因?yàn)?故令即,記,當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減,又,當(dāng)時(shí),取最大值,此時(shí),的最大值為米.【點(diǎn)睛】本題主要考查了三角函數(shù)在實(shí)際中的應(yīng)用,需要根據(jù)題意建立角度與長(zhǎng)度間的關(guān)系,進(jìn)而求導(dǎo)分析函數(shù)的單調(diào)性,根據(jù)三角函數(shù)值求解對(duì)應(yīng)的最值即可.屬于難題.19、(Ⅰ);(Ⅱ)分布列見(jiàn)解析,.【解析】
(Ⅰ)直接利用古典概型概率公式求.(Ⅱ)先由題得可能取值為,再求x的分布列和期望.【詳解】(Ⅰ)(Ⅱ)可能取值為,,,,,的分布列為0123.【點(diǎn)睛】本題主要考查古典概型的計(jì)算,考查隨機(jī)變量的分布列和期望的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.20、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開(kāi)即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),,,,,,,.【點(diǎn)睛】本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.21、(1)是函數(shù)的極大值點(diǎn),理由詳見(jiàn)解析;(2)1.【解析】
(1)將直接代入,對(duì)求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點(diǎn);(2)利用題目已有條件得,再證明時(shí),不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時(shí),.令,則當(dāng)時(shí),.即在內(nèi)為減函數(shù),且∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點(diǎn).(2)由題意,得,即.現(xiàn)證明當(dāng)時(shí),不等式成立,即.即證令則∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時(shí),.即當(dāng)時(shí),不等式成立.綜上,整數(shù)的最小值為.【點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來(lái)求解函數(shù)中的參數(shù)的取值范圍,對(duì)學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問(wèn)題,為難題22、(1)見(jiàn)解析;(2)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024出租土地建廠房合同
- 2024房屋貸款合同丟了辦理
- 2024新版農(nóng)民工勞動(dòng)合同書(shū)范本
- 2024年企業(yè)培訓(xùn)與人才發(fā)展合同:含員工培訓(xùn)和職業(yè)生涯規(guī)劃
- 2024格式合同樣本范文
- 2024汽車修理廠勞動(dòng)合同
- 2024弱電分包合同范本
- 2024年企業(yè)并購(gòu)合同(金融服務(wù)行業(yè))
- 2024吉林省木材購(gòu)銷合同
- 2024年大型客機(jī)零部件供應(yīng)合同
- 人教版五年級(jí)上冊(cè)數(shù)學(xué)簡(jiǎn)便計(jì)算300題及答案
- 阿里巴巴福利分析課件
- 做負(fù)責(zé)任的人
- 【道德與法治】云南省保山市騰沖市2023-2024學(xué)年九年級(jí)上學(xué)期期末試題
- 電影八佰觀后感
- 抖音認(rèn)證承諾函
- 湖北省武漢市東湖高新區(qū)2021-2022學(xué)年九年級(jí)上學(xué)期期中考試化學(xué)試題
- 出口托運(yùn)單據(jù)課件
- 化學(xué)品作業(yè)場(chǎng)所安全警示標(biāo)志雙氧水
- 腫瘤細(xì)胞的免疫逃逸機(jī)制
- 口腔科診療技術(shù)操作規(guī)范2023版
評(píng)論
0/150
提交評(píng)論