吉林省四平市公主嶺市第五高級(jí)中學(xué)2023年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第1頁(yè)
吉林省四平市公主嶺市第五高級(jí)中學(xué)2023年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第2頁(yè)
吉林省四平市公主嶺市第五高級(jí)中學(xué)2023年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第3頁(yè)
吉林省四平市公主嶺市第五高級(jí)中學(xué)2023年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第4頁(yè)
吉林省四平市公主嶺市第五高級(jí)中學(xué)2023年高考全國(guó)統(tǒng)考預(yù)測(cè)密卷數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿(mǎn)、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線(xiàn)條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.2.一小商販準(zhǔn)備用元錢(qián)在一批發(fā)市場(chǎng)購(gòu)買(mǎi)甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣(mài)出去件可賺元,乙商品每賣(mài)出去件可賺元.該商販若想獲取最大收益,則購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.已知且,函數(shù),若,則()A.2 B. C. D.4.《聊齋志異》中有這樣一首詩(shī):“挑水砍柴不堪苦,請(qǐng)歸但求穿墻術(shù).得訣自詡無(wú)所阻,額上墳起終不悟.”在這里,我們稱(chēng)形如以下形式的等式具有“穿墻術(shù)”:,,,,則按照以上規(guī)律,若具有“穿墻術(shù)”,則()A.48 B.63 C.99 D.1205.過(guò)拋物線(xiàn)的焦點(diǎn)F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線(xiàn)上的一動(dòng)點(diǎn),,若,則的最小值是()A.1 B.2 C.3 D.46.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開(kāi)始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開(kāi)始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米7.設(shè)函數(shù)的定義域?yàn)椋瑵M(mǎn)足,且當(dāng)時(shí),.若對(duì)任意,都有,則的取值范圍是().A. B. C. D.8.?dāng)?shù)列的通項(xiàng)公式為.則“”是“為遞增數(shù)列”的()條件.A.必要而不充分 B.充要 C.充分而不必要 D.即不充分也不必要9.某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正確結(jié)論是()A.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”B.有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”C.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”D.在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”10.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱(chēng)為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺(jué)得最為滿(mǎn)意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.11.已知直線(xiàn):與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.12.如圖,在中,,是上一點(diǎn),若,則實(shí)數(shù)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線(xiàn)方程為_(kāi)____.14.已知雙曲線(xiàn)(a>0,b>0)的一條漸近線(xiàn)方程為,則該雙曲線(xiàn)的離心率為_(kāi)______.15.在正方體中,為棱的中點(diǎn),是棱上的點(diǎn),且,則異面直線(xiàn)與所成角的余弦值為_(kāi)_________.16.已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)且斜率為1的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),,若線(xiàn)段的垂直平分線(xiàn)與軸交點(diǎn)的橫坐標(biāo)為,則的值為_(kāi)________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線(xiàn)的極坐標(biāo)方程是,射線(xiàn)與圓的交點(diǎn)為、,與直線(xiàn)的交點(diǎn)為,求線(xiàn)段的長(zhǎng).18.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線(xiàn)方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.19.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測(cè)數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動(dòng)直線(xiàn)交拋物線(xiàn):于點(diǎn),點(diǎn)為的焦點(diǎn).圓心不在軸上的圓與直線(xiàn),,軸都相切,設(shè)的軌跡為曲線(xiàn).(1)求曲線(xiàn)的方程;(2)若直線(xiàn)與曲線(xiàn)相切于點(diǎn),過(guò)且垂直于的直線(xiàn)為,直線(xiàn),分別與軸相交于點(diǎn),.當(dāng)線(xiàn)段的長(zhǎng)度最小時(shí),求的值.20.(12分)如圖,在直角梯形中,,,,為的中點(diǎn),沿將折起,使得點(diǎn)到點(diǎn)位置,且,為的中點(diǎn),是上的動(dòng)點(diǎn)(與點(diǎn),不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.21.(12分)已知數(shù)列,其前項(xiàng)和為,滿(mǎn)足,,其中,,,.⑴若,,(),求證:數(shù)列是等比數(shù)列;⑵若數(shù)列是等比數(shù)列,求,的值;⑶若,且,求證:數(shù)列是等差數(shù)列.22.(10分)如圖,在四棱錐中,底面是邊長(zhǎng)為2的菱形,,平面平面,點(diǎn)為棱的中點(diǎn).(Ⅰ)在棱上是否存在一點(diǎn),使得平面,并說(shuō)明理由;(Ⅱ)當(dāng)二面角的余弦值為時(shí),求直線(xiàn)與平面所成的角.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫(huà)出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線(xiàn)為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.2、D【解析】

由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購(gòu)買(mǎi)甲、乙兩種商品的件數(shù)應(yīng)分別,利潤(rùn)為元,由題意,畫(huà)出可行域如圖所示,顯然當(dāng)經(jīng)過(guò)時(shí),最大.故選:D.【點(diǎn)睛】本題考查線(xiàn)性目標(biāo)函數(shù)的線(xiàn)性規(guī)劃問(wèn)題,解決此類(lèi)問(wèn)題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫(huà)出可行域,本題是一道基礎(chǔ)題.3、C【解析】

根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.4、C【解析】

觀(guān)察規(guī)律得根號(hào)內(nèi)分母為分子的平方減1,從而求出n.【詳解】解:觀(guān)察各式發(fā)現(xiàn)規(guī)律,根號(hào)內(nèi)分母為分子的平方減1所以故選:C.【點(diǎn)睛】本題考查了歸納推理,發(fā)現(xiàn)總結(jié)各式規(guī)律是關(guān)鍵,屬于基礎(chǔ)題.5、C【解析】

設(shè)直線(xiàn)AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點(diǎn)共線(xiàn)時(shí),即可得答案.【詳解】根據(jù)題意,可知拋物線(xiàn)的焦點(diǎn)為,則直線(xiàn)AB的斜率存在且不為0,設(shè)直線(xiàn)AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線(xiàn)CD的方程為,同理,所以,所以.故.過(guò)點(diǎn)P作PM垂直于準(zhǔn)線(xiàn),M為垂足,則由拋物線(xiàn)的定義可得.所以,當(dāng)Q,P,M三點(diǎn)共線(xiàn)時(shí),等號(hào)成立.故選:C.【點(diǎn)睛】本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意取最值的條件.6、D【解析】

根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.7、B【解析】

求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當(dāng)時(shí),,,,又,所以至少小于7,此時(shí),令,得,解得或,結(jié)合圖象,故.故選:B.【點(diǎn)睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.8、A【解析】

根據(jù)遞增數(shù)列的特點(diǎn)可知,解得,由此得到若是遞增數(shù)列,則,根據(jù)推出關(guān)系可確定結(jié)果.【詳解】若“是遞增數(shù)列”,則,即,化簡(jiǎn)得:,又,,,則是遞增數(shù)列,是遞增數(shù)列,“”是“為遞增數(shù)列”的必要不充分條件.故選:.【點(diǎn)睛】本題考查充分條件與必要條件的判斷,涉及到根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍,屬于基礎(chǔ)題.9、B【解析】

通過(guò)與表中的數(shù)據(jù)6.635的比較,可以得出正確的選項(xiàng).【詳解】解:,可得有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”,故選B.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.10、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.11、A【解析】

由題意可知直線(xiàn)過(guò)定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線(xiàn)的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線(xiàn)過(guò)定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)椋裕?,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過(guò)運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.12、C【解析】

由題意,可根據(jù)向量運(yùn)算法則得到(1﹣m),從而由向量分解的唯一性得出關(guān)于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點(diǎn)睛】本題考查平面向量基本定理,根據(jù)分解的唯一性得到所求參數(shù)的方程是解答本題的關(guān)鍵,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線(xiàn)斜率,最后利用點(diǎn)斜式寫(xiě)出切線(xiàn)方程.【詳解】由題意得.故切線(xiàn)方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線(xiàn)方程的基本方法,利用切點(diǎn)滿(mǎn)足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】

根據(jù)題意,由雙曲線(xiàn)的漸近線(xiàn)方程可得,即a=2b,進(jìn)而由雙曲線(xiàn)的幾何性質(zhì)可得cb,由雙曲線(xiàn)的離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,雙曲線(xiàn)的漸近線(xiàn)方程為y=±x,又由該雙曲線(xiàn)的一條漸近線(xiàn)方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線(xiàn)的離心率e;故答案為:.【點(diǎn)睛】本題考查雙曲線(xiàn)的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.15、【解析】

根據(jù)題意畫(huà)出幾何題,建立空間直角坐標(biāo)系,寫(xiě)個(gè)各個(gè)點(diǎn)的坐標(biāo),并求得.由空間向量的夾角求法即可求得異面直線(xiàn)與所成角的余弦值.【詳解】根據(jù)題意畫(huà)出幾何圖形,以為原點(diǎn)建立空間直角坐標(biāo)系:設(shè)正方體的棱長(zhǎng)為1,則所以所以,所以異面直線(xiàn)與所成角的余弦值為,故答案為:.【點(diǎn)睛】本題考查了異面直線(xiàn)夾角的求法,利用空間向量求異面直線(xiàn)夾角,屬于中檔題.16、1【解析】

設(shè),寫(xiě)出直線(xiàn)方程代入拋物線(xiàn)方程后應(yīng)用韋達(dá)定理求得,由拋物線(xiàn)定義得焦點(diǎn)弦長(zhǎng),求得,再寫(xiě)出的垂直平分線(xiàn)方程,得,從而可得結(jié)論.【詳解】拋物線(xiàn)的焦點(diǎn)坐標(biāo)為,直線(xiàn)的方程為,據(jù)得.設(shè),則.線(xiàn)段垂直平分線(xiàn)方程為,令,則,所以,所以.故答案為:1.【點(diǎn)睛】本題考查拋物線(xiàn)的焦點(diǎn)弦問(wèn)題,根據(jù)拋物線(xiàn)的定義表示出焦點(diǎn)弦長(zhǎng)是解題關(guān)鍵.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】

(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標(biāo)方程即可;(2)設(shè),,由,即可求出,則計(jì)算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標(biāo)方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點(diǎn)睛】本題考查了利用極坐標(biāo)方程求曲線(xiàn)的交點(diǎn)弦長(zhǎng),考查了推理能力與計(jì)算能力,屬于中檔題.18、(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見(jiàn)解析.【解析】

試題分析:(1)由題得,根據(jù)曲線(xiàn)在點(diǎn)處的切線(xiàn)方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)?,,因?yàn)榍€(xiàn)在點(diǎn)處的切線(xiàn)方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.19、(1).(2)見(jiàn)解析.【解析】試題分析:(1)設(shè)根據(jù)題意得到,化簡(jiǎn)得到軌跡方程;(2)設(shè),,,,構(gòu)造函數(shù)研究函數(shù)的單調(diào)性,得到函數(shù)的最值.解析:(1)因?yàn)閽佄锞€(xiàn)的方程為,所以的坐標(biāo)為,設(shè),因?yàn)閳A與軸、直線(xiàn)都相切,平行于軸,所以圓的半徑為,點(diǎn),則直線(xiàn)的方程為,即,所以,又,所以,即,所以的方程為.(2)設(shè),,,由(1)知,點(diǎn)處的切線(xiàn)的斜率存在,由對(duì)稱(chēng)性不妨設(shè),由,所以,,所以,,所以.令,,則,由得,由得,所以在區(qū)間單調(diào)遞減,在單調(diào)遞增,所以當(dāng)時(shí),取得極小值也是最小值,即取得最小值,此時(shí).點(diǎn)睛:求軌跡方程,一般是問(wèn)誰(shuí)設(shè)誰(shuí)的坐標(biāo)然后根據(jù)題目等式直接求解即可,而對(duì)于直線(xiàn)與曲線(xiàn)的綜合問(wèn)題要先分析題意轉(zhuǎn)化為等式,例如,可以轉(zhuǎn)化為向量坐標(biāo)進(jìn)行運(yùn)算也可以轉(zhuǎn)化為斜率來(lái)理解,然后借助韋達(dá)定理求解即可運(yùn)算此類(lèi)題計(jì)算一定要仔細(xì).20、(Ⅰ)見(jiàn)解析(Ⅱ)存在,此時(shí)為的中點(diǎn).【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點(diǎn)滿(mǎn)足題意,過(guò)作于,平面,過(guò)作于,連接,則,過(guò)作于,連接,是二面角的平面角,設(shè),,計(jì)算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點(diǎn)滿(mǎn)足題意,過(guò)作于,由知,易證平面,所以平面,過(guò)作于,連接,則(三垂線(xiàn)定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時(shí)為的中點(diǎn).綜上知,存在點(diǎn),使得二面角的余弦值,此時(shí)為的中點(diǎn).【點(diǎn)睛】本題考查了面面垂直,根據(jù)二面角確定點(diǎn)的位置,意在考查學(xué)生的空間想象能力和計(jì)算能力,也可以建立空間直角坐標(biāo)系解得答案.21、(1)見(jiàn)解析(2)(3)見(jiàn)解析【解析】試題分析:(1)(),所以,故數(shù)列是等比數(shù)列;(2)利用特殊值法,得,故;(3)得,所以,得,可證數(shù)列是等差數(shù)列.試題解析:(1)證明:若,則當(dāng)(),所以,即,所以,又由,,得,,即,所以,故數(shù)列是等比數(shù)列.(2)若是等比數(shù)列,設(shè)其公比為(),當(dāng)時(shí),,即,得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論