版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術(shù)》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設(shè),假設(shè)金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤2.已知等差數(shù)列中,則()A.10 B.16 C.20 D.243.在空間直角坐標系中,四面體各頂點坐標分別為:.假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.4.已知集合,集合,則等于()A. B.C. D.5.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的值為()A.0 B.1 C. D.6.已知函數(shù),,的零點分別為,,,則()A. B.C. D.7.設(shè),則()A. B. C. D.8.已知函數(shù),,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.9.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.10.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件11.已知,,,若,則正數(shù)可以為()A.4 B.23 C.8 D.1712.若2m>2n>1,則()A. B.πm﹣n>1C.ln(m﹣n)>0 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知內(nèi)角的對邊分別為外接圓的面積為,則的面積為_________.14.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.15.定義在R上的函數(shù)滿足:①對任意的,都有;②當時,,則函數(shù)的解析式可以是______________.16.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的導函數(shù)的兩個零點為和.(1)求的單調(diào)區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.18.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負半軸的公共點分別為、,又記與在第一、第四象限的公共點分別為、.(1)若,且恰為的左焦點,求的兩條漸近線的方程;(2)若,且,求實數(shù)的值;(3)若恰為的左焦點,求證:在軸上不存在這樣的點,使得.19.(12分)己知點,分別是橢圓的上頂點和左焦點,若與圓相切于點,且點是線段靠近點的三等分點.求橢圓的標準方程;直線與橢圓只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于,兩點,求面積的取值范圍.20.(12分)記拋物線的焦點為,點在拋物線上,且直線的斜率為1,當直線過點時,.(1)求拋物線的方程;(2)若,直線與交于點,,求直線的斜率.21.(12分)[選修45:不等式選講]已知都是正實數(shù),且,求證:.22.(10分)如圖,三棱柱的所有棱長均相等,在底面上的投影在棱上,且∥平面(Ⅰ)證明:平面平面;(Ⅱ)求直線與平面所成角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
依題意,金箠由粗到細各尺重量構(gòu)成一個等差數(shù)列,則,由此利用等差數(shù)列性質(zhì)求出結(jié)果.【詳解】設(shè)金箠由粗到細各尺重量依次所成得等差數(shù)列為,設(shè)首項,則,公差,.故選B【點睛】本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.3、C【解析】
將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.4、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關(guān)集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎(chǔ)題目.5、A【解析】
根據(jù)輸入的值大小關(guān)系,代入程序框圖即可求解.【詳解】輸入,,因為,所以由程序框圖知,輸出的值為.故選:A【點睛】本題考查了對數(shù)式大小比較,條件程序框圖的簡單應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
轉(zhuǎn)化函數(shù),,的零點為與,,的交點,數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.7、D【解析】
結(jié)合指數(shù)函數(shù)及對數(shù)函數(shù)的單調(diào)性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數(shù)的大小比較,考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.8、B【解析】
由題意可將方程轉(zhuǎn)化為,令,,進而將方程轉(zhuǎn)化為,即或,再利用的單調(diào)性與最值即可得到結(jié)論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉(zhuǎn)化為.即,所以或.因為,當時,,所以在,上單調(diào)遞增,且時,.當時,,在上單調(diào)遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數(shù)與方程的關(guān)系,考查函數(shù)的單調(diào)性與最值,轉(zhuǎn)化的數(shù)學思想,屬于中檔題.9、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點睛】本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.10、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.11、C【解析】
首先根據(jù)對數(shù)函數(shù)的性質(zhì)求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數(shù)可以為8.故選:C【點睛】本題考查對數(shù)函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.12、B【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,結(jié)合特殊值進行辨析.【詳解】若2m>2n>1=20,∴m>n>0,∴πm﹣n>π0=1,故B正確;而當m,n時,檢驗可得,A、C、D都不正確,故選:B.【點睛】此題考查根據(jù)指數(shù)冪的大小關(guān)系判斷參數(shù)的大小,根據(jù)參數(shù)的大小判定指數(shù)冪或?qū)?shù)的大小關(guān)系,需要熟練掌握指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),結(jié)合特值法得出選項.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內(nèi)角,從而有,于是可得三角形邊長,可得面積.【詳解】設(shè)外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內(nèi)角,然后可得邊長,從而得面積,掌握正弦定理是解題關(guān)鍵.14、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想方法,屬于中檔題.15、(或,答案不唯一)【解析】
由可得是奇函數(shù),再由時,可得到滿足條件的奇函數(shù)非常多,屬于開放性試題.【詳解】在中,令,得;令,則,故是奇函數(shù),由時,,知或等,答案不唯一.故答案為:(或,答案不唯一).【點睛】本題考查抽象函數(shù)的性質(zhì),涉及到由表達式確定函數(shù)奇偶性,是一道開放性的題,難度不大.16、161【解析】
由題意可知出院人數(shù)構(gòu)成一個首項為1,公比為2的等比數(shù)列,由此可求結(jié)果.【詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項,2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點睛】本題主要考查了等比數(shù)列在實際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查推理能力與計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)最大值是.【解析】
(1)求得,由題意可知和是函數(shù)的兩個零點,根據(jù)函數(shù)的符號變化可得出的符號變化,進而可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)由(1)中的結(jié)論知,函數(shù)的極小值為,進而得出,解出、、的值,然后利用導數(shù)可求得函數(shù)在區(qū)間上的最大值.【詳解】(1),令,因為,所以的零點就是的零點,且與符號相同.又因為,所以當時,,即;當或時,,即.所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(2)由(1)知,是的極小值點,所以有,解得,,,所以.因為函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.所以為函數(shù)的極大值,故在區(qū)間上的最大值取和中的最大者,而,所以函數(shù)在區(qū)間上的最大值是.【點睛】本題考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間與最值,考查計算能力,屬于中等題.18、(1);(2);(2)見解析.【解析】
(1)由圓的方程求出點坐標,得雙曲線的,再計算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標,計算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,設(shè),由得,(*),,,,所以,即,解得,方程(*)為,即,,代入雙曲線方程得,∵在第一、四象限,∴,,∴.(3)由題意,,,,,設(shè)由得:,,由得,解得,,,所以,,,當且僅當三點共線時,等號成立,∴軸上不存在點,使得.【點睛】本題考查求漸近線方程,考查圓與雙曲線相交問題.考查向量的加法運算,本題對學生的運算求解能力要求較高,解題時都是直接求出交點坐標.難度較大,屬于困難題.19、;.【解析】
連接,由三角形相似得,,進而得出,,寫出橢圓的標準方程;由得,,因為直線與橢圓相切于點,,解得,,因為點在第二象限,所以,,所以,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標準方程;由得,,因為直線與橢圓相切于點,所以,即,解得,,即點的坐標為,因為點在第二象限,所以,,所以,所以點的坐標為,設(shè)直線與垂直交于點,則是點到直線的距離,設(shè)直線的方程為,則,當且僅當,即時,有最大值,所以,即面積的取值范圍為.【點睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.20、(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點的縱坐標為,然后直線的方程與直線的方程聯(lián)立解得交點H的縱坐標,說明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因為直線的斜率為1,則,所以,因為,所以線段中點的縱坐標為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點的縱坐標為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.21、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式22、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)連接
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版:融資租賃合同
- 2024年某商業(yè)大廈消防系統(tǒng)工程承包合同版B版
- 2025專利實施許可合同2
- 2025產(chǎn)品代加工合同范文
- 研發(fā)中心土地租賃合同鄉(xiāng)鎮(zhèn)
- 2025不動產(chǎn)贈與合同
- 食品加工廠設(shè)備維護
- 醫(yī)療器械銷售代表招聘協(xié)議
- 精密儀器批次管理辦法
- 河北省邢臺市2024屆高三上學期期末考試數(shù)學試題(解析版)
- 2014光伏發(fā)電站功率控制能力檢測技術(shù)規(guī)程
- 第15課 有創(chuàng)意的書(說課稿)2022-2023學年美術(shù)四年級上冊 人教版
- 2023年上海交通大學827材料科學基礎(chǔ)試題
- 信訪面試資料
- 焊接工藝評定轉(zhuǎn)化表
- 《報告文學研究》(07562)自考考試復(fù)習題庫(含答案)
- 拼多多運營合作合同范本
- 小學英語-module10 unit2 eat vegetables every day教學設(shè)計學情分析教材分析課后反思
- Unit3Timeschange!Period1Startingout教案-高中英語外研版選擇性
- 全國大學英語四、六級考試缺考申請表
- 美國特朗普-課件
評論
0/150
提交評論