版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現(xiàn)從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.2.在三棱錐中,,,P在底面ABC內的射影D位于直線AC上,且,.設三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.3.學業(yè)水平測試成績按照考生原始成績從高到低分為、、、、五個等級.某班共有名學生且全部選考物理、化學兩科,這兩科的學業(yè)水平測試成績如圖所示.該班學生中,這兩科等級均為的學生有人,這兩科中僅有一科等級為的學生,其另外一科等級為,則該班()A.物理化學等級都是的學生至多有人B.物理化學等級都是的學生至少有人C.這兩科只有一科等級為且最高等級為的學生至多有人D.這兩科只有一科等級為且最高等級為的學生至少有人4.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.5.已知數(shù)列中,,且當為奇數(shù)時,;當為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.6.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a7.劉徽是我國魏晉時期偉大的數(shù)學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網(wǎng)格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.8.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關于點成中心對稱C.函數(shù)在單調遞增D.函數(shù)的圖象向右平移后關于原點成中心對稱9.設,為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件10.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.11.某個小區(qū)住戶共200戶,為調查小區(qū)居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區(qū)內用水量超過15m3的住戶的戶數(shù)為()A.10 B.50 C.60 D.14012.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內角是第一象限角或第二象限角;③若命題,,則命題,;④設集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,項的系數(shù)是__________.14.三所學校舉行高三聯(lián)考,三所學校參加聯(lián)考的人數(shù)分別為160,240,400,為調查聯(lián)考數(shù)學學科的成績,現(xiàn)采用分層抽樣的方法在這三所學校中抽取樣本,若在學校抽取的數(shù)學成績的份數(shù)為30,則抽取的樣本容量為____________.15.設變量,,滿足約束條件,則目標函數(shù)的最小值是______.16.已知函數(shù)的部分圖象如圖所示,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設為直線上一點,且直線、的斜率的積為.證明:點在軸上.18.(12分)如圖,四邊形中,,,,沿對角線將翻折成,使得.(1)證明:;(2)求直線與平面所成角的正弦值.19.(12分)選修4-5:不等式選講已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數(shù)f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.20.(12分)設為實數(shù),在極坐標系中,已知圓()與直線相切,求的值.21.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設,為數(shù)列的前項和,記,證明:.22.(10分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
分別求得所有基本事件個數(shù)和滿足題意的基本事件個數(shù),根據(jù)古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數(shù)和滿足題意的基本事件個數(shù).2、A【解析】
設的中點為O先求出外接圓的半徑,設,利用平面ABC,得,在及中利用勾股定理構造方程求得球的半徑即可【詳解】設的中點為O,因為,所以外接圓的圓心M在BO上.設此圓的半徑為r.因為,所以,解得.因為,所以.設,易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題3、D【解析】
根據(jù)題意分別計算出物理等級為,化學等級為的學生人數(shù)以及物理等級為,化學等級為的學生人數(shù),結合表格中的數(shù)據(jù)進行分析,可得出合適的選項.【詳解】根據(jù)題意可知,名學生減去名全和一科為另一科為的學生人(其中物理化學的有人,物理化學的有人),表格變?yōu)椋何锢砘瘜W對于A選項,物理化學等級都是的學生至多有人,A選項錯誤;對于B選項,當物理和,化學都是時,或化學和,物理都是時,物理、化學都是的人數(shù)最少,至少為(人),B選項錯誤;對于C選項,在表格中,除去物理化學都是的學生,剩下的都是一科為且最高等級為的學生,因為都是的學生最少人,所以一科為且最高等級為的學生最多為(人),C選項錯誤;對于D選項,物理化學都是的最多人,所以兩科只有一科等級為且最高等級為的學生最少(人),D選項正確.故選:D.【點睛】本題考查合情推理,考查推理能力,屬于中等題.4、A【解析】
分段求解函數(shù)零點,數(shù)形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點睛】本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.5、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進而可求解.【詳解】當為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎題.6、C【解析】
兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎題.7、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數(shù)形結合的思想和運算求解的能力,屬于基礎題.8、B【解析】
根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質,即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質,其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質求解是解答的關鍵,著重考查了數(shù)形結合思想,以及運算與求解能力,屬于基礎題.9、D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運算即可說明成立;必要性中,由數(shù)量積運算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數(shù)量積的運算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.10、A【解析】
設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.11、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區(qū)內用水量超過15立方米的住戶戶數(shù)為,故選C12、B【解析】
①利用真假表來判斷,②考慮內角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當內角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、240【解析】
利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點睛】本題主要考查二項式展開式的通項公式及簡單應用,相對不難.14、【解析】
某層抽取的人數(shù)等于該層的總人數(shù)乘以抽樣比.【詳解】設抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學生基本的運算能力,是一道容易題.15、7【解析】作出不等式組表示的平面區(qū)域,得到如圖的△ABC及其內部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經(jīng)過點A時,目標函數(shù)z達到最小值∴z最小值=F(2,1)=716、【解析】
由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數(shù)值,考查學生識圖、計算等能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點的坐標,即可證得結論.【詳解】(1)由題設,得,所以,即.故橢圓的方程為;(2)設,則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.18、(1)見證明;(2)【解析】
(1)取的中點,連.可證得,,于是可得平面,進而可得結論成立.(2)運用幾何法或向量法求解可得所求角的正弦值.【詳解】(1)證明:取的中點,連.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中點,連結,∵,∴,又,∴.又由題意得為等邊三角形,∴,∵,∴平面.作,則有平面,∴就是直線與平面所成的角.設,則,在等邊中,.又在中,,故.在中,由余弦定理得,∴,∴直線與平面所成角的正弦值為.解法2:由題意可得,建立如圖所示的空間直角坐標系.不妨設,則在直角三角形中,可得,作于,則有平面幾何知識可得,∴.又可得,.∴,.設平面的一個法向量為,由,得,令,則得.又,設直線與平面所成的角為,則.所以直線與平面所成角的正弦值為.【點睛】利用向量法求解直線和平面所成角時,關鍵點是恰當建立空間直角坐標系,確定斜線的方向向量和平面的法向量.解題時通過平面的法向量和直線的方向向量來求,即求出斜線的方向向量與平面的法向量所夾的銳角或鈍角的補角,取其余角就是斜線與平面所成的角.求解時注意向量的夾角與線面角間的關系.19、(1),(2)【解析】試題分析:用零點分區(qū)間討論法解含絕對值的不等式,根據(jù)絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數(shù)f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R時,恒有|x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)市場推廣合作合同
- 2024年格力空調質保與安裝服務協(xié)議
- 2025幼兒園園長聘用合同
- 渠道溝通機制建設增強協(xié)作效率
- 瑜伽館廣告牌建設合同
- 福建省福州市部分學校教學聯(lián)盟2023-2024學年高一上學期期末考試歷史試題(解析版)
- 北京市延慶區(qū)2023-2024學年高二上學期期末考試歷史試題(解析版)
- 三違行為預防與干預體系
- 河南省洛陽市2023-2024學年高二上學期期末考試數(shù)學試題(解析版)
- 河北省邢臺市質檢聯(lián)盟2025屆高三上學期11月期中考試數(shù)學試題(解析版)
- 甲醇-水精餾填料塔的設計
- 吹風機成品過程質量控制檢查指引
- 中介人合作協(xié)議(模版)
- 財務管理制度-家電行業(yè)
- 班主任工作滿意度測評表
- 德國WMF壓力鍋使用手冊
- 瀝青路面施工監(jiān)理工作細則
- 《尋找消失的爸爸》(圖形)
- 《孤獨癥兒童-行為管理策略及行為治療課程》讀后總結
- 人教版八年級上冊英語單詞表默寫版(直接打印)
- PDCA循環(huán)在傳染病管理工作中的應用
評論
0/150
提交評論