2021-2022學(xué)年湖北省武漢蔡甸區(qū)五校聯(lián)考中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第1頁
2021-2022學(xué)年湖北省武漢蔡甸區(qū)五校聯(lián)考中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第2頁
2021-2022學(xué)年湖北省武漢蔡甸區(qū)五校聯(lián)考中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第3頁
2021-2022學(xué)年湖北省武漢蔡甸區(qū)五校聯(lián)考中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第4頁
2021-2022學(xué)年湖北省武漢蔡甸區(qū)五校聯(lián)考中考數(shù)學(xué)最后沖刺濃縮精華卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.圖1~圖4是四個(gè)基本作圖的痕跡,關(guān)于四條?、佟ⅱ?、③、④有四種說法:?、偈且設(shè)為圓心,任意長為半徑所畫的?。换、谑且訮為圓心,任意長為半徑所畫的?。换、凼且訟為圓心,任意長為半徑所畫的弧;?、苁且訮為圓心,任意長為半徑所畫的??;其中正確說法的個(gè)數(shù)為()A.4 B.3 C.2 D.12.在如圖所示的計(jì)算程序中,y與x之間的函數(shù)關(guān)系所對(duì)應(yīng)的圖象應(yīng)為()A. B. C. D.3.下列計(jì)算正確的是()A.a(chǎn)6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)?2x3=﹣6x6 D.(π﹣3)0=14.如圖,在等邊三角形ABC中,點(diǎn)P是BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點(diǎn)D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.5.不等式組中兩個(gè)不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.6.某工廠計(jì)劃生產(chǎn)210個(gè)零件,由于采用新技術(shù),實(shí)際每天生產(chǎn)零件的數(shù)量是原計(jì)劃的1.5倍,因此提前5天完成任務(wù).設(shè)原計(jì)劃每天生產(chǎn)零件個(gè),依題意列方程為()A. B.C. D.7.一次函數(shù)滿足,且隨的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.在△ABC中,AB=AC=13,BC=24,則tanB等于()A. B. C. D.9.如圖,這是一個(gè)幾何體的三視圖,根據(jù)圖中所示數(shù)據(jù)計(jì)算這個(gè)幾何體的側(cè)面積為()A.9π B.10π C.11π D.12π10.矩形具有而平行四邊形不具有的性質(zhì)是()A.對(duì)角相等 B.對(duì)角線互相平分C.對(duì)角線相等 D.對(duì)邊相等11.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點(diǎn)F,則的面積為()A.4 B.6 C.8 D.1012.在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,tanA的值為()A. B. C. D.3二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖是由兩個(gè)長方體組合而成的一個(gè)立體圖形的三視圖,根據(jù)圖中所示尺寸(單位:mm),計(jì)算出這個(gè)立體圖形的表面積.14.正五邊形的內(nèi)角和等于______度.15.因式分解:3x3﹣12x=_____.16.小明用一個(gè)半徑為30cm且圓心角為240°的扇形紙片做成一個(gè)圓錐形紙帽(粘合部分忽略不計(jì)),那么這個(gè)圓錐形紙帽的底面半徑為_____cm.17.將直線y=x+b沿y軸向下平移3個(gè)單位長度,點(diǎn)A(-1,2)關(guān)于y軸的對(duì)稱點(diǎn)落在平移后的直線上,則b的值為____.18.從﹣1,2,3,﹣6這四個(gè)數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)圖象上的概率是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者關(guān)注的問題之一.為此,某區(qū)教委對(duì)該區(qū)部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):對(duì)學(xué)習(xí)很感興趣;B級(jí):對(duì)學(xué)習(xí)較感興趣;C級(jí):對(duì)學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問題:此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;將圖①補(bǔ)充完整;求出圖②中C級(jí)所占的圓心角的度數(shù).20.(6分)如圖,已知△ABC,請(qǐng)用尺規(guī)作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).21.(6分)已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,經(jīng)過點(diǎn)A的直線y=﹣3x+b與拋物線的另一個(gè)交點(diǎn)為D.(1)若點(diǎn)D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;(2)若在第三象限內(nèi)的拋物線上有點(diǎn)P,使得以A、B、P為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo);(3)在(1)的條件下,設(shè)點(diǎn)E是線段AD上的一點(diǎn)(不含端點(diǎn)),連接BE.一動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿線段BE以每秒1個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)E,再沿線段ED以每秒2322.(8分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點(diǎn)之間AB的長.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41423.(8分)已知AC=DC,AC⊥DC,直線MN經(jīng)過點(diǎn)A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.24.(10分)如圖,△ABC中,點(diǎn)D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.25.(10分)如圖,正方形ABCD的邊長為4,點(diǎn)E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.②請(qǐng)直接寫出使△CGH是等腰三角形的m值.26.(12分)某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?(2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?27.(12分)如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于E.求證:△AFE≌△CDF;若AB=4,BC=8,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)弧①是以O(shè)為圓心,任意長為半徑所畫的弧,正確;(2)?、谑且訮為圓心,大于點(diǎn)P到直線的距離為半徑所畫的弧,錯(cuò)誤;(3)?、凼且訟為圓心,大于AB的長為半徑所畫的弧,錯(cuò)誤;(4)?、苁且訮為圓心,任意長為半徑所畫的弧,正確.故選C.【點(diǎn)睛】此題主要考查了基本作圖,解決問題的關(guān)鍵是掌握基本作圖的方法.2、D【解析】

先求出一次函數(shù)的關(guān)系式,再根據(jù)函數(shù)圖象與坐標(biāo)軸的交點(diǎn)及函數(shù)圖象的性質(zhì)解答即可.【詳解】由題意知,函數(shù)關(guān)系為一次函數(shù)y=-1x+4,由k=-1<0可知,y隨x的增大而減小,且當(dāng)x=0時(shí),y=4,當(dāng)y=0時(shí),x=1.故選D.【點(diǎn)睛】本題考查學(xué)生對(duì)計(jì)算程序及函數(shù)性質(zhì)的理解.根據(jù)計(jì)算程序可知此計(jì)算程序所反映的函數(shù)關(guān)系為一次函數(shù)y=-1x+4,然后根據(jù)一次函數(shù)的圖象的性質(zhì)求解.3、D【解析】解:A.a(chǎn)6÷a2=a4,故A錯(cuò)誤;B.(﹣2)﹣1=﹣,故B錯(cuò)誤;C.(﹣3x2)?2x3=﹣6x5,故C錯(cuò);D.(π﹣3)0=1,故D正確.故選D.4、C【解析】

根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補(bǔ)角相等可得出∠BAP=∠CPD,進(jìn)而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對(duì)照四個(gè)選項(xiàng)即可得出.【詳解】∵△ABC為等邊三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點(diǎn)睛】考查了動(dòng)點(diǎn)問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.5、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.6、A【解析】

設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),則實(shí)際每天生產(chǎn)零件為1.5x個(gè),根據(jù)提前5天完成任務(wù),列方程即可.【詳解】設(shè)原計(jì)劃每天生產(chǎn)零件x個(gè),則實(shí)際每天生產(chǎn)零件為1.5x個(gè),由題意得,故選:A.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,解答本題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找出合適的等量關(guān)系,列方程即可.7、A【解析】試題分析:根據(jù)y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數(shù)的圖象經(jīng)過第二、三、四象限,即不經(jīng)過第一象限.故選A.考點(diǎn):一次函數(shù)圖象與系數(shù)的關(guān)系.8、B【解析】如圖,等腰△ABC中,AB=AC=13,BC=24,過A作AD⊥BC于D,則BD=12,在Rt△ABD中,AB=13,BD=12,則,AD=,故tanB=.故選B.【點(diǎn)睛】考查的是銳角三角函數(shù)的定義、等腰三角形的性質(zhì)及勾股定理.9、B【解析】【分析】由三視圖可判斷出幾何體的形狀,進(jìn)而利用圓錐的側(cè)面積公式求出答案.【詳解】由題意可得此幾何體是圓錐,底面圓的半徑為:2,母線長為:5,故這個(gè)幾何體的側(cè)面積為:π×2×5=10π,故選B.【點(diǎn)睛】本題考查了由三視圖判斷幾何體的形狀以及圓錐側(cè)面積求法,正確得出幾何體的形狀是解題關(guān)鍵.10、C【解析】試題分析:舉出矩形和平行四邊形的所有性質(zhì),找出矩形具有而平行四邊形不具有的性質(zhì)即可.解:矩形的性質(zhì)有:①矩形的對(duì)邊相等且平行,②矩形的對(duì)角相等,且都是直角,③矩形的對(duì)角線互相平分、相等;平行四邊形的性質(zhì)有:①平行四邊形的對(duì)邊分別相等且平行,②平行四邊形的對(duì)角分別相等,③平行四邊形的對(duì)角線互相平分;∴矩形具有而平行四邊形不一定具有的性質(zhì)是對(duì)角線相等,故選C.11、C【解析】

根據(jù)折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質(zhì)知,第二個(gè)圖中BD=AB-AD=4,第三個(gè)圖中AB=AD-BD=2,

因?yàn)锽C∥DE,

所以BF:DE=AB:AD,

所以BF=2,CF=BC-BF=4,

所以△CEF的面積=CF?CE=8;

故選:C.點(diǎn)睛:

本題利用了:①折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等;②矩形的性質(zhì),平行線的性質(zhì),三角形的面積公式等知識(shí)點(diǎn).12、B【解析】

根據(jù)勾股定理和三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的對(duì)邊分別為a、b、c,c=3a,設(shè)a=x,則c=3x,b==2x.即tanA==.故選B.【點(diǎn)睛】本題考查勾股定理和三角函數(shù),熟悉掌握是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、100mm1【解析】

首先根據(jù)三視圖得到兩個(gè)長方體的長,寬,高,在分別表示出每個(gè)長方體的表面積,最后減去上面的長方體與下面的長方體的接觸面積即可.【詳解】根據(jù)三視圖可得:上面的長方體長4mm,高4mm,寬1mm,下面的長方體長8mm,寬6mm,高1mm,∴立體圖形的表面積是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案為100mm1.【點(diǎn)睛】此題主要考查了由三視圖判斷幾何體以及求幾何體的表面積,根據(jù)圖形看出長方體的長,寬,高是解題的關(guān)鍵.14、540【解析】

過正五邊形五個(gè)頂點(diǎn),可以畫三條對(duì)角線,把五邊形分成3個(gè)三角形∴正五邊形的內(nèi)角和=3180=540°15、3x(x+2)(x﹣2)【解析】

先提公因式3x,然后利用平方差公式進(jìn)行分解即可.【詳解】3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2),故答案為3x(x+2)(x﹣2).【點(diǎn)睛】本題考查了提公因式法與公式法分解因式,要求靈活使用各種方法對(duì)多項(xiàng)式進(jìn)行因式分解,一般來說,如果可以先提取公因式的要先提取公因式,再考慮運(yùn)用公式法分解.16、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設(shè)這個(gè)圓錐形紙帽的底面半徑為r.

根據(jù)題意,得40π=2πr,

解得r=20cm.故答案是:20.【點(diǎn)睛】解答本題的關(guān)鍵是有確定底面周長=展開圖的弧長這個(gè)等量關(guān)系,然后由扇形的弧長公式和圓的周長公式求值.17、1【解析】試題分析:先根據(jù)一次函數(shù)平移規(guī)律得出直線y=x+b沿y軸向下平移3個(gè)單位長度后的直線解析式y(tǒng)=x+b﹣3,再把點(diǎn)A(﹣1,2)關(guān)于y軸的對(duì)稱點(diǎn)(1,2)代入y=x+b﹣3,得1+b﹣3=2,解得b=1.故答案為1.考點(diǎn):一次函數(shù)圖象與幾何變換18、.【解析】試題分析:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)圖象上的概率是:=.故答案為.考點(diǎn):反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征;列表法與樹狀圖法.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)200,(2)圖見試題解析(3)540【解析】

試題分析:(1)根據(jù)A級(jí)的人數(shù)與所占的百分比列式進(jìn)行計(jì)算即可求出被調(diào)查的學(xué)生人數(shù);(2)根據(jù)總?cè)藬?shù)求出C級(jí)的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)1減去A、B兩級(jí)所占的百分比乘以360°即可得出結(jié)論.試題解析::(1)調(diào)查的學(xué)生人數(shù)為:=200名;(2)C級(jí)學(xué)生人數(shù)為:200-50-120=30名,補(bǔ)全統(tǒng)計(jì)圖如圖;(3)學(xué)習(xí)態(tài)度達(dá)標(biāo)的人數(shù)為:360×[1-(25%+60%]=54°.答:求出圖②中C級(jí)所占的圓心角的度數(shù)為54°.考點(diǎn):條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用20、見解析【解析】

分別作∠ABC和∠ACB的平分線,它們的交點(diǎn)O滿足條件.【詳解】解:如圖,點(diǎn)O為所作.【點(diǎn)睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個(gè)角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點(diǎn)作已知直線的垂線).21、(1)y=﹣3(x+3)(x﹣1)=﹣3x2﹣23x+33;(2)(﹣4,﹣153)和(﹣6,﹣37)(3)(1,﹣43【解析】試題分析:(1)根據(jù)二次函數(shù)的交點(diǎn)式確定點(diǎn)A、B的坐標(biāo),求出直線的解析式,求出點(diǎn)D的坐標(biāo),求出拋物線的解析式;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據(jù)正切的定義求出Q的運(yùn)動(dòng)時(shí)間t=BE+EF時(shí),t最小即可.試題解析:(1)∵y=a(x+3)(x﹣1),∴點(diǎn)A的坐標(biāo)為(﹣3,0)、點(diǎn)B兩的坐標(biāo)為(1,0),∵直線y=﹣x+b經(jīng)過點(diǎn)A,∴b=﹣3,∴y=﹣x﹣3,當(dāng)x=2時(shí),y=﹣5,則點(diǎn)D的坐標(biāo)為(2,﹣5),∵點(diǎn)D在拋物線上,∴a(2+3)(2﹣1)=﹣5,解得,a=﹣,則拋物線的解析式為y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(2)作PH⊥x軸于H,設(shè)點(diǎn)P的坐標(biāo)為(m,n),當(dāng)△BPA∽△ABC時(shí),∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a(m﹣1),∴,解得,m1=﹣4,m2=1(不合題意,舍去),當(dāng)m=﹣4時(shí),n=5a,∵△BPA∽△ABC,∴=,即AB2=AC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則n=5a=﹣,∴點(diǎn)P的坐標(biāo)為(﹣4,﹣);當(dāng)△PBA∽△ABC時(shí),∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a(m﹣1),∴,解得,m1=﹣6,m2=1(不合題意,舍去),當(dāng)m=﹣6時(shí),n=21a,∵△PBA∽△ABC,∴=,即AB2=BC?PB,∴42=?,解得,a1=(不合題意,舍去),a2=﹣,則點(diǎn)P的坐標(biāo)為(﹣6,﹣),綜上所述,符合條件的點(diǎn)P的坐標(biāo)為(﹣4,﹣)和(﹣6,﹣);(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,則tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的運(yùn)動(dòng)時(shí)間t=+=BE+EF,∴當(dāng)BE和EF共線時(shí),t最小,則BE⊥DM,E(1,﹣4).考點(diǎn):二次函數(shù)綜合題.22、新傳送帶AC的長為1.8m,新、原傳送帶觸地點(diǎn)之間AB的長約為1.2m.【解析】

根據(jù)題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進(jìn)而求出AB的長.【詳解】解:如圖,作CD⊥AB于點(diǎn)D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點(diǎn)之間AB的長約為1.2m.【點(diǎn)睛】本題考查了坡度坡角問題,正確構(gòu)建直角三角形再求出BD的長是解題的關(guān)鍵.23、(1)相等或互補(bǔ);(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點(diǎn)C,D在直線MN同側(cè)和點(diǎn)C,D在直線MN兩側(cè),兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當(dāng)點(diǎn)C,D在直線MN同側(cè),當(dāng)點(diǎn)C,D在直線MN兩側(cè),兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補(bǔ);理由:當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,∴∠CAM=∠D;當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2,∵∠ACD=∠ABD=90°,∠AEC=∠BED,∴∠CAB=∠D,∵∠CAB+∠CAM=180°,∴∠CAM+∠D=180°,即:∠D與∠MAC之間的數(shù)量是相等或互補(bǔ);(2)①猜想:BD+AB=BC如圖3,在射線AM上截取AF=BD,連接CF.又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AF+AB=BF=∴BD+AB=;②如圖2,在射線AM上截取AF=BD,連接CF,又∵∠D=∠FAC,CD=AC∴△BCD≌△FCA,∴BC=FC,∠BCD=∠FCA∵AC⊥CD∴∠ACD=90°即∠ACB+∠BCD=90°∴∠ACB+∠FCA=90°即∠FCB=90°∴BF=∵AB﹣AF=BF=∴AB﹣BD=;(3)①當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖3﹣1,由(2)①知,△ACF≌△DCB,∴CF=BC,∠ACF=∠ACD=90°,∴∠ABC=45°,∵∠ABD=90°,∴∠CBD=45°,過點(diǎn)D作DG⊥BC于G,在Rt△BDG中,∠CBD=45°,BD=,∴DG=BG=1,在Rt△CGD中,∠BCD=30°,∴CG=DG=,∴BC=CG+BG=+1,②當(dāng)點(diǎn)C,D在直線MN兩側(cè)時(shí),如圖2﹣1,過點(diǎn)D作DG⊥CB交CB的延長線于G,同①的方法得,BG=1,CG=,∴BC=CG﹣BG=﹣1即:BC=或,【點(diǎn)睛】本題考查了三角形中的邊長關(guān)系,等腰直角三角形的性質(zhì),中等難度,分類討論與作輔助線是解題關(guān)鍵.24、BD=2.【解析】

試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點(diǎn)睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關(guān)鍵.25、(1)=;(2)結(jié)論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】

(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結(jié)論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計(jì)算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結(jié)論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當(dāng)GC=GH時(shí),易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當(dāng)CH=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論