2022-2023學年江蘇省無錫江陰市市級名校中考數(shù)學模試卷含解析_第1頁
2022-2023學年江蘇省無錫江陰市市級名校中考數(shù)學模試卷含解析_第2頁
2022-2023學年江蘇省無錫江陰市市級名校中考數(shù)學模試卷含解析_第3頁
2022-2023學年江蘇省無錫江陰市市級名校中考數(shù)學模試卷含解析_第4頁
2022-2023學年江蘇省無錫江陰市市級名校中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長到B時,點B所表示的實數(shù)是()A.1B.-6C.2或-6D.不同于以上答案2.一元二次方程的根是()A. B.C. D.3.如圖,直線a∥b,∠ABC的頂點B在直線a上,兩邊分別交b于A,C兩點,若∠ABC=90°,∠1=40°,則∠2的度數(shù)為()A.30° B.40° C.50° D.60°4.二次函數(shù)的圖象如圖所示,則下列各式中錯誤的是()A.a(chǎn)bc>0 B.a(chǎn)+b+c>0 C.a(chǎn)+c>b D.2a+b=05.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a66.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.27.義安區(qū)某中學九年級人數(shù)相等的甲、乙兩班學生參加同一次數(shù)學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定8.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現(xiàn)已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.9.若關于x的一元二次方程x2﹣2x+m=0沒有實數(shù)根,則實數(shù)m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣110.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.511.若正六邊形的半徑長為4,則它的邊長等于()A.4 B.2 C. D.12.在一個不透明的盒子里有2個紅球和n個白球,這些球除顏色外其余完全相同,搖勻后隨機摸出一個,摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知是的高線,且,,則_________.14.如圖,一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關閉進水管直到容器內(nèi)的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的部分關系.那么,從關閉進水管起分鐘該容器內(nèi)的水恰好放完.15.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.16.關于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.17.雙察下列等式:,,,…則第n個等式為_____.(用含n的式子表示)18.如圖,在平面直角坐標系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=1.若把矩形OABC繞著點O逆時針旋轉,使點A恰好落在BC邊上的A1處,則點C的對應點C1的坐標為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,(1)求k的值;(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.20.(6分)某小學為了了解學生每天完成家庭作業(yè)所用時間的情況,從每班抽取相同數(shù)量的學生進行調(diào)查,并將所得數(shù)據(jù)進行整理,制成條形統(tǒng)計圖和扇形統(tǒng)計圖如下:補全條形統(tǒng)計圖;求扇形統(tǒng)計圖扇形D的圓心角的度數(shù);若該中學有2000名學生,請估計其中有多少名學生能在1.5小時內(nèi)完成家庭作業(yè)?21.(6分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球?qū)嶒灒龑⒑凶永锩娴那驍噭蚝髲闹须S機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?22.(8分)先化簡,再求代數(shù)式()÷的值,其中x=sin60°,y=tan30°.23.(8分)在邊長為1的5×5的方格中,有一個四邊形OABC,以O點為位似中心,作一個四邊形,使得所作四邊形與四邊形OABC位似,且該四邊形的各個頂點都在格點上;求出你所作的四邊形的面積.24.(10分)如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.求證:四邊形ABCD是菱形;若AB=,BD=2,求OE的長.25.(10分)學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數(shù)式表示△BDQ的面積S△BDQ.26.(12分)先化簡,再求值:÷(a﹣),其中a=3tan30°+1,b=cos45°.27.(12分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結論是否依然成立.說明理由.(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】解:∵點A為數(shù)軸上的表示-1的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-1-4=-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為-1+4=1.故選C.點睛:注意數(shù)的大小變化和平移之間的規(guī)律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.2、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.3、C【解析】

依據(jù)平行線的性質(zhì),可得∠BAC的度數(shù),再根據(jù)三角形內(nèi)和定理,即可得到∠2的度數(shù).【詳解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°?40°=50°,故選C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,內(nèi)錯角相等.4、B【解析】

根據(jù)二次函數(shù)的圖象與性質(zhì)逐一判斷即可.【詳解】解:由圖象可知拋物線開口向上,∴,∵對稱軸為,∴,∴,∴,故D正確,又∵拋物線與y軸交于y軸的負半軸,∴,∴,故A正確;當x=1時,,即,故B錯誤;當x=-1時,即,∴,故C正確,故答案為:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)之間的關系,解題的關鍵是熟練掌握二次函數(shù)各系數(shù)的意義以及二次函數(shù)的圖象與性質(zhì).5、D【解析】

根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關鍵.6、C【解析】

根據(jù)題意得出旋轉后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經(jīng)過(1.﹣1),∴設旋轉后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關鍵是求出旋轉后的函數(shù)解析式.本題屬于基礎題,難度不大.7、B【解析】

根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.8、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數(shù)式表示出相等關系中的各個部分,列出方程即可.9、C【解析】試題解析:關于的一元二次方程沒有實數(shù)根,,解得:故選C.10、A【解析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.11、A【解析】試題分析:正六邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,故正六邊形的半徑等于1,則正六邊形的邊長是1.故選A.考點:正多邊形和圓.12、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4cm【解析】

根據(jù)三角形的高線的定義得到,根據(jù)直角三角形的性質(zhì)即可得到結論.【詳解】解:∵是的高線,∴,∵,,∴.故答案為:4cm.【點睛】本題考查了三角形的角平分線、中線、高線,含30°角的直角三角形,熟練掌握直角三角形的性質(zhì)是解題的關鍵.14、8?!窘馕觥扛鶕?jù)函數(shù)圖象求出進水管的進水量和出水管的出水量,由工程問題的數(shù)量關系就可以求出結論:由函數(shù)圖象得:進水管每分鐘的進水量為:20÷4=5升。設出水管每分鐘的出水量為a升,由函數(shù)圖象,得,解得:?!嚓P閉進水管后出水管放完水的時間為:(分鐘)。15、-23≤y≤2【解析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.16、1【解析】【分析】根據(jù)根與系數(shù)的關系結合x1+x2=x1?x2可得出關于k的一元二次方程,解之即可得出k的值,再根據(jù)方程有實數(shù)根結合根的判別式即可得出關于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點睛】本題考查了根的判別式以及根與系數(shù)的關系,熟練掌握“當一元二次方程有實數(shù)根時,根的判別式△≥0”是解題的關鍵.17、=【解析】

探究規(guī)律后,寫出第n個等式即可求解.【詳解】解:…則第n個等式為故答案為:【點睛】本題主要考查二次根式的應用,找到規(guī)律是解題的關鍵.18、【解析】

直接利用相似三角形的判定與性質(zhì)得出△ONC1三邊關系,再利用勾股定理得出答案.【詳解】過點C1作C1N⊥x軸于點N,過點A1作A1M⊥x軸于點M,由題意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,則△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴設NO=1x,則NC1=4x,OC1=1,則(1x)2+(4x)2=9,解得:x=±(負數(shù)舍去),則NO=,NC1=,故點C的對應點C1的坐標為:(﹣,).故答案為(﹣,).【點睛】此題主要考查了矩形的性質(zhì)以及勾股定理等知識,正確得出△A1OM∽△OC1N是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)32;(2)x<﹣4或0<x<4;(3)點P的坐標是P(﹣7+,14+2);或P(7+,﹣14+2).【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點A(4,8),再根據(jù)點A與B關于原點對稱,得出B點坐標,即可得出k的值;(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點的右邊正比例函數(shù)的值小于反比例函數(shù)的值.(3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即1.可根據(jù)雙曲線的解析式設出P點的坐標,然后表示出△POA的面積,由于△POA的面積為1,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.詳解:(1)∵點A在正比例函數(shù)y=2x上,∴把x=4代入正比例函數(shù)y=2x,解得y=8,∴點A(4,8),把點A(4,8)代入反比例函數(shù)y=,得k=32,(2)∵點A與B關于原點對稱,∴B點坐標為(﹣4,﹣8),由交點坐標,根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;(3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,∴OP=OQ,OA=OB,∴四邊形APBQ是平行四邊形,∴S△POA=S平行四邊形APBQ×=×224=1,設點P的橫坐標為m(m>0且m≠4),得P(m,),過點P、A分別做x軸的垂線,垂足為E、F,∵點P、A在雙曲線上,∴S△POE=S△AOF=16,若0<m<4,如圖,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=1.∴(8+)?(4﹣m)=1.∴m1=﹣7+3,m2=﹣7﹣3(舍去),∴P(﹣7+3,16+);若m>4,如圖,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=1.∴×(8+)?(m﹣4)=1,解得m1=7+3,m2=7﹣3(舍去),∴P(7+3,﹣16+).∴點P的坐標是P(﹣7+3,16+);或P(7+3,﹣16+).點睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=中k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結合的思想,求得三角形的面積.20、(1)補圖見解析;(2)27°;(3)1800名【解析】

(1)根據(jù)A類的人數(shù)是10,所占的百分比是25%即可求得總人數(shù),然后根據(jù)百分比的意義求得B類的人數(shù);

(2)用360°乘以對應的比例即可求解;

(3)用總人數(shù)乘以對應的百分比即可求解.【詳解】(1)抽取的總人數(shù)是:10÷25%=40(人),在B類的人數(shù)是:40×30%=12(人).;(2)扇形統(tǒng)計圖扇形D的圓心角的度數(shù)是:360×=27°;(3)能在1.5小時內(nèi)完成家庭作業(yè)的人數(shù)是:2000×(25%+30%+35%)=1800(人).考點:條形統(tǒng)計圖、扇形統(tǒng)計圖.21、(1)0.6;(2)0.6;(3)白球有24只,黑球有16只.【解析】試題分析:通過題意和表格,可知摸到白球的概率都接近與0.6,因此摸到白球的概率估計值為0.6.22、【解析】

先根據(jù)分式混合運算的法則把原式進行化簡,再計算x和y的值并代入進行計算即可【詳解】原式∴原式【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.23、(1)如圖所示,見解析;四邊形OA′B′C′即為所求;(2)S四邊形OA′B′C′=1.【解析】

(1)結合網(wǎng)格特點,分別作出點A、B、C關于點O成位似變換的對應點,再順次連接即可得;(2)根據(jù)S四邊形OA′B′C′=S△OA′B′+S△OB′C′計算可得.【詳解】(1)如圖所示,四邊形OA′B′C′即為所求.(2)S四邊形OA′B′C′=S△OA′B′+S△OB′C′=12×4×4+1=8+2=1.【點睛】本題考查了作圖-位似變換:先確定位似中心;再分別連接并延長位似中心和能代表原圖的關鍵點;接著根據(jù)位似比,確定能代表所作的位似圖形的關鍵點;然后順次連接上述各點,得到放大或縮小的圖形.24、(1)見解析;(1)OE=1.【解析】

(1)先判斷出∠OAB=∠DCA,進而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結論;

(1)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結論.【詳解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC為∠DAB的平分線,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四邊形ABCD是平行四邊形,∵AD=AB,∴?ABCD是菱形;(1)∵四邊形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==1,∴OE=OA=1.【點睛】此題主要考查了菱形的判定和性質(zhì),平行四邊形的判定和性質(zhì),角平分線的定義,勾股定理,判斷出CD=AD=AB是解本題的關鍵25、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】

(1)根據(jù)要求利用全等三角形的判定和性質(zhì)畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據(jù)垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論